Use of the sem electroanalytical technique for the characterization of warm and semi-warm asphalt mixtures. MAPIA case study

Main Article Content

Jhon Vladimir Acevedo Perez
https://orcid.org/0000-0001-5337-3351
Mikel Fernando Hurtado Morales
https://orcid.org/0000-0002-7588-9313
Saieth Baudilio Pabón Chaves
https://orcid.org/0000-0001-6950-9401

Abstract

With the analysis of the use of MAPIA natural asphalt (stone material impregnated with asphalt) in asphalt mixtures in warm (WMA) and semi-warm (HWMA) state, the aim is to study the possibility of prolonging the life cycle (LCA) in daily use (García, A., & Kikut Cruz, K., 2020).  The SEM characterization technique (Scanning electronic Microscopy) was used, which yielded compounds such as Albite (0.06%), MgO (0.04%) (Magnesium Oxide), SiO2 (0.18%) (Silicon Dioxide) and a small percentage of Ti (0.10%) (Titanium), the main elements found in the sample are carbon (77.46%) and oxygen (14.26%). Briquettes were analyzed by the Marshall method at three different temperatures: HMA (150°C), WMA (120°C) and HWMA (100°C) with an asphalt content of 10%. A minimal difference was found between the WMA and HMA briquettes, in the WMA the peak load is 5.3 mm for the flow and 6.2 kN for the stability, while in the HMA the peak load is 4.5 mm for the flow and 6 kN for the stability, with these results, the most optimal temperature to carry out a future more detailed petrography study is the WMA based on the similar response to the Considering the use of MAPIA at a lower temperature would be beneficial for the environment by producing lower emissions and designing asphalt mixtures that include environmental sustainability as a design variable in the LCA, contributing to Sustainable Development Goal No. 9 (SDG). (Sustainable Development Goals 2020).

References

S. G. T. &. A. S. Biro, «Determination of zero shear viscosity of warm asphalt binders,» Construction and Building Materials, vol. 5, p. 23, 2009.

Y. Sánchez, «Utilización de asfalto natural en la construcción de pavimentos en Colombia: una recopilación bibliográfica.,» 2018.

G. &. R. B. N. Beltrán Calvo, El concreto asfáltico visto bajo el microscopio, Bogotá: Universidad Nacional de Colombia, 2022.

J. Kelso y A. G. P. Powell, Bulletin of the American Schools of Oriental Research, Chicago: The University of Chicago Press, 1994, pp. 14-18.

N. &. C. N. Nciri, «Laboratory Methods for Identification of Geologic Origins of NaturalAsphalts with Special Emphasis on their Potentia l Uses: The Case of Trinidad Pitch and Utah Bitumen.,» Conference: International Conference on “Advances in Materials and Manufacturing Applications (IConAMMA 2017)

R. Babagoli, M. Hasaninia y N. Namazi, Laboratory evaluation of the effect of gilsonite on the performance of stone matrix asphalt mixtures, Road Mater. Pavement Des, 2015, pp. 889-906.

D. &. R. P. Batchellor, «SEM and AFM: complementary techniques for high resolution surface».

J. S. V. L. A. y. V. C. F. E. Núñez Hernández, «Asfalto natural alternativa de rehabilitación y mejoramiento de la infraestructura vial del Alto Magdalena Colombia: Revisión Sistemática,» Centro Sur, Agosto 2020.

M. d. Transporte, «https://www.mintransporte.gov.co/publicaciones/9443/transporte-en-cifras/,»19 julio 2021. [En línea]. Available: https://www.mintransporte.gov.co/publicaciones/9443/transporte-en-cifras/.

M. Picard, «Searching for Gilsonite when I was young.,» J. Geosci. Educ., vol. 50, p. 471–474, 2002.

H. Jahanian, G. Shafabakhsh y H. Divandari, «Performance evaluation of Hot Mix Asphalt (HMA) containing bitumen modified with Gilsonite,» Construction and Building Materials, vol. 131, pp. 156-164, 30 Enero 2017.

C. Wong y K. Michael, «The Effect of Gilsonite- Modified Asphalt on Hot Mix Asphaltic Concrete Mixes Used in District 12, Houston,» Transport research Board, junio 1990.

A. Bahrami, F. Kazemi y Y. Ghorbani, «Effect of different reagent regime on the kinetic model and recovery in gilsonite flotation,» Journal of Materials, Research and Technology, pp. 1-12, Agosto 2019.

H. Al Hawesah, M. Sadique, C. Harris, H. Al Nageim, K. Stopp, H. Pearl y A. Shubbar, «A review on improving asphalt pavement service life using gilsonite-modified bitumen,» Sustainability, Junio 2021.

D. Q. Sun, «A study on Xinjiang asphaltite as an asphalt modifier. Part I: Composition, structure, and thermal behavior.,» Petroleum Science and Technology, vol. 30, nº 3, pp. 307-315, 2012.

S. Ren, M. Liang, W. Fan, Y. Zhang, C. Qian, Y. He y J. Shi, «Investigating the effects of SBR on the properties of gilsonite modified asphalt,» Construction and Building Materials, vol. 190, pp. 1103-1116, 30 Noviembre 2018.

A. Bahrami, F. Kazemi, A. Alighardashi, Y. Ghorbani, M. Abdollahi y A. Parvizian, «Isolation and removal of cyanide from tailing dams in gold processing plant using natural bitumen.,» Journal of Environmental Management, vol. 262, 15 Mayo

F. Kazemi, A. Bahrami y J. Sharif, «Mineral processing plant site selection using integrated fuzzy cognitive map and fuzzy analytical hierarchy process approach: A case study of gilsonite mines in Iran,» Minerals Engineering, vol. 147, 01 Marzo

B. Huang, G. Li y X. Shu, «Investigation into threelayered HMA mixtures.,» Composites Part B: Engineering, pp. 679-690, Diciembre 2006.

A. Ameli, R. Babagoli, S. Asadi y N. Norouzi, «Investigation of the performance properties of asphalt binders and mixtures modified by crumb rubber and Gilsonite.,» Construction and Building Materials, vol. 279, Abril 2021.

« Norma de construcción Pavimentos Asfáltico,» 2018.

«rockidentifier,» [En línea]. Available: https:// rockidentifier.com/es/wiki/Wollastonite.html.

Most read articles by the same author(s)