Estimación del rendimiento del cultivo de Passiflora Edulis (Maracuyá) a partir de modelos estadísticos

Main Article Content

Leila Nayibe Ramírez Castañeda
Santiago Potes Potes

Abstract

Crop planning needs tools to support to making decision to establish its economic and environmental sustainability, as proposed this article presents a statistical analysis for historical data from 2007 to 2014 of the independent agroclimatic variables of the station code 21055020, located in the coordinate latitude 2,378 and length -75,89 municipality of La Plata, Huila, Colombia. Objective estimates a performance forecast using two mathematical models ARIMA and Multiple Regression. These are recommended in the literature. Finally, the results are compared to understand the system and establish their interactions, as support for decision making. The crop selected for the analysis is Passion Fruit (Passiflora Edulis) This crop has an impact economic and social for farmers in the area. The Multiple Regression Model underestimates the peaks of higher performance, besides the adjustment of the model is very low, which implies that this model is descriptive and not predictive while the ARIMA model is recommended given its adjustment to the time series analyzed for this study.

References

[1] A. M. Soto Garcés, J. M. Cortés Torres y D. Rodríguez Caicedo, "Modelo de simulación del crecimiento y desarrollo de la papa criolla Growth and development simulation model of potato", Ciencia en Desarrollo, vol. 9, no. 1, pp. 9-20, Ene.-Jun. 2018.

[2] N. Kantanantha, "Crop decision planning under yield and price uncertainties", Ph.D. tesis, H. Milton Stewart Sch. of Ind. and Sys. Eng. Georgia Inst. of Tech., Georgia, Estados Unidos, 2007.

[3] O. Delgadillo-Ruiz, P. P. Ramírez-Moreno, J. A. Leos-Rodríguez, J. M. Salas González y R. D. Valdez-Cepeda, "Pronósticos y series de tiempo de rendimientos de granos básicos en México", Acta Univ., vol. 26, no. 3, pp. 23-32, 2016.

[4] J. Ruiz-Ramírez, G. E. Hernández Rodríguez y R. Zuleta-Rodríguez,, "Análisis de series de tiempo en el pronóstico de la producción de caña de azúcar", Terra Latin. vol. 29, no. 1. 2011. [En línea]. Disponible en: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0187-57792011000100103.

[5] C. Martínez Ventura, "Pronósticos de producción agrícola", Archivos de Eco., abr. 2006.

[6] R. D. Kusumastuti, D. P. Van Donk, y R. Teunter, "Crop-related harvesting and processing planning: A review", Int. J. Prod. Econ., vol. 174, pp. 76-92, 2016.

[7] O. Musshoff y N. Hirschauer, "What benefits are to be derived from improved farm program planning approaches? – The role of time series models and stochastic optimization", Agric. Syst., vol. 95, no. 1-3, pp. 11-27, Dic. 2007.

[8] C. Martínez Ventura, «Pronósticos de producción agrícola», Departamento Nacional de Planeación; DNP, 2006.

[9] T. H. Hengl, A Practical Guide to Geostatistical Mapping. Luxemburgo: Office for Official Publications of the European Communities, 2009.

[10] T. Hengl, G. B. M. Heuvelink, y D. G. Rossiter, "About regression-kriging: From equations to case studies", Comput. Geosci., vol. 33, no. 10, pp. 1301-1315, Oct. 2007.

[11] D. Derryberry, Basic data analysis for time series with R, John Wiley & Sons, 2014.

[12] R. Dalinina, "Introduction to Forecasting with ARIMA in R". [En línea]. Disponible en: https://www.datascience.com/blog/introduction-to-forecasting-with-arima-in-r-learn-data-science-tutorials.

[13] D. Jackson., N.E. Looney, y M. Morley-Bunker,Temperate and subtropical fruit production, Inglaterra, CABI, 2011.

[14] D. J. Pannell, B. Malcolm, y R. S. Kingwell, "Are we risking too much? Perspectives on risk in farm modelling", Agric. Econ., vol. 23, no. 1, pp. 69-78, 2000.

[15] G. Moschini y D. A. Hennessy, "Uncertainty, risk aversion, and risk management for agricultural producers", Handbook of Agri. Econ., vol. 1,pp. 88-153 2001.

[16] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, y G. C. Ljung, Time Series Analysis: Forecasting and Control, 5.a ed. Nueva York, NY: John Wiley & Sons, 2015.

[17] A. V. Metcalfe y P. S. P. Cowpertwait, Introductory Time Series with R. Nueva York, NY: Springer New York, 2009.

[18] D. Montgomery, Vining, G. G. y E. A. Peck, Introducción al análisis de regresión lineal, México: Limusa Wiley, 2006.

[19] R. Shumway y D.S. Stoffer, Time series regression and exploratory data analysis, Springer,2006.

[20] J. D. Cryer y K.-S. Chan, Time Series Analysis. Nueva York, NY: Springer New York, 2008.

[21] "R: The R Project for Statistical Computing". [En línea]. Disponible en: https://www.r-project.org/.

[22] R. J. Hyndman y Y. Khandakar, "Automatic Time Series Forecasting: The forecast Package for R", J. Stat. Softw., vol. 27, no. 3, 2008.