Previsão de curto prazo do índice de preços ao consumidor: Análise do custo da eletricidade na costa caribenha da Colômbia

Conteúdo do artigo principal

Milton M. Herrera
https://orcid.org/0000-0002-0766-8391
Vanessa Alejandra Cisneros-Sosa
Andrés Fabian Lara-Montañez

Resumo

A costa caribenha colombiana se caracteriza por suas condições favoráveis ​​à geração de energia solar. No entanto, ainda não foram explorados de forma a permitir uma transição energética adequada no país. Nesse contexto, o artigo apresenta uma avaliação do consumo de energia solar sob dois aspetos: primeiro, investiga a rentabilidade do uso de energias renováveis ​​aplicadas à região do Caribe na Colômbia. Em segundo lugar, avalia por meio de um modelo econométrico a relação entre a implementação da energia solar no nível de consumo exigido por esta região, com relação à renda per capita da população caribenha. Os resultados mostram por meio de um modelo econométrico que a remuneração desse serviço público recairá sobre a população socioeconomicamente menos favorecida. Portanto, este artigo contribui para a compreensão dos efeitos das políticas de energia solar na região caribenha da Colômbia, o que inclui uma discussão sobre as limitações da infraestrutura elétrica nesta área do país.

Referências

O. C. Silvera, M. V. Chamorro, y G. V. Ochoa, “Wind and solar resource assessment and prediction using artificial neural network and semi-empirical model: case study of the Colombian Caribbean Region”, Heliyon, vol. 7, n. 9, p. e07959, sep. 2021, doi: 10.1016/j.heliyon.2021.e07959.

A. R. L pez et al., “Solar PV generation in Colombia ― A qualitative and quantitative approach to analyze the potential of solar energy market”, Renew. Energy, vol. 148, pp. 1266–1279, 2020, doi: 10.1016/j.renene.2019.10.066.

F. Henao, Y. Rodriguez, J. P. Viteri, and I. Dyner, “Optimising the insertion of renewables in the Colombian power sector”, Renew. Energy, vol. 132, pp. 81–92, 2019, doi: 10.1016/j.renene.2018.07.099.

H. Porras, A. Martínez, M. M. Herrera, U. Jorge, and T. Lozano, “Un análisis de las implicaciones de la falta cobertura de energías renovables en Colombia”, vol. 13, n. 25, pp. 41–52, 2018, doi: 10.26620/uniminuto.inventum.13.25.2018.

C. Viviescas et al., “Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources”, Renew. Sustain. Energy Rev., vol. 113, p. 109232, oct. 2019, doi: 10.1016/J.RSER.2019.06.039.

S. Zapata, M. Castaneda, E. Garces, C. J. Franco, and I. Dyner, “Assessing security of supply in a largely hydroelectricity-based system: The Colombian case”, Energy, vol. 156, pp. 444–457, 2018, doi: 10.1016/j.energy.2018.05.118.

M. M. Herrera, I. Dyner, and F. Cosenz, “Assessing the effect of transmission constraints on wind power expansion in northeast Brazil”, Util. Policy, vol. 59, p. 100924, ago. 2019, doi: 10.1016/j.jup.2019.05.010.

M. M. Herrera, I. Dyner, y F. Cosenz, “Benefits from energy policy synchronisation of Brazil”s North-Northeast interconnection”, Renew. Energy, vol. 162, pp. 427–437, 2020, doi: 10.1016/j.renene.2020.08.056.

M. M. Herrera, F. Cosenz, y I. Dyner, “How to support energy policy coordination? Findings from the Brazilian wind industry”, Electr. J., vol. 32, n. 8, 2019, doi: 10.1016/j.tej.2019.106636.

R. A. F. Cardoso J nior, A. Magrini, y A. F. da Hora, “Environmental licensing process of power transmission in Brazil update analysis: Case study of the Madeira transmission system”, Energy Policy, vol. 67, pp. 281–289, 2014, doi: 10.1016/j.enpol.2013.12.040.

R. Mirya, R. Soria, R. Schaeffer, A. Szklo, y L. Saporta, “Contributions to the analysis of ‘Integrating large scale wind power into the electricity grid in the Northeast of Brazil” [Energy 100 (2016) 401–415]”, Energy, vol. 118, pp. 1198–1209, 2017, doi: 10.1016/j.energy.2016.10.138.

P. De Jong, A. Kiperstok, y E. A. Torres, “Economic and environmental analysis of electricity generation technologies in Brazil”, Renew. Sustain. Energy Rev., vol. 52, pp. 725–739, 2015, doi: 10.1016/j.rser.2015.06.064.

I. Dyner, “Energy modelling platforms for policy and strategy support”, J. Oper. Res. Soc., vol. 51, n. 2, pp. 136–144, 2000.

C. Ochoa, I. Dyner, y C. J. Franco, “Simulating power integration in Latin America to assess challenges, opportunities, and threats”, Energy Policy, vol. 61, pp. 267–273, 2013, doi: 10.1016/j.enpol.2013.07.029.

M. Jimenez, C. J. Franco, y I. Dyner, “Diffusion of renewable energy technologies: The need for policy in Colombia”, Energy, vol. 111, pp. 818–829, 2016, doi: 10.1016/j.energy.2016.06.051.

A. Bradshaw, “Regulatory change and innovation in Latin America: The case of renewable energy in Brazil”, Util. Policy, vol. 49, pp. 156–164, 2017, doi: 10.1016/j.jup.2017.01.006.

Y. Zhang, W. Jin, y M. Xu, “Total factor efficiency and convergence analysis of renewable energy in Latin American countries”, Renew. Energy, vol. 170, pp. 785–795, jun. 2021, doi: 10.1016/J.RENENE.2021.02.016.

IRENA, “Global Renewables Outlook: Energy transformation 2050”, International Renewable Energy Agency, 2020 [en línea]. Disponible: https://irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.

U. Nyambuu y W. Semmler, “Climate Change and the Transition to a Low Carbon Economy – Carbon Targets and the Carbon Budget”, Econ. Model., abr. 2019, doi: 10.1016/J.ECONMOD.2019.04.026.

J. Blazquez, R. Fuentes, y B. Manzano, “On some economic principles of the energy transition”, Energy Policy, vol. 147, n. sept, p. 111807, 2020, doi: 10.1016/j.enpol.2020.111807.

M. Espinosa. I. Cadena, y E. Behrentz, “Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector”, Energy Policy, vol. 124, n. August 2018, pp. 111–122, 2019, doi: 10.1016/j.enpol.2018.09.039.

J. Calderon-Tellez y M. M. Herrera, “Appraising the impact of air transport on the environment: Lessons from the COVID-19 pandemic”, Perspect., vol. 10, p. 100351, mar. 2021, doi: 10.1016/j.trip.2021.100351.

S. Zapata, M. Castaneda, M. Jimenez, A. J. Aristizabal, C. J. Franco, y I. Dyner, “Longterm effects of 100% renewable generation on the Colombian power market”, Sustain. Energy Technol. Assessments, vol. 30, pp. 183–191, feb. 2018, doi: 10.1016/j.seta.2018.10.008.

G. Carvajal-Romo, M. Valderrama-Mendoza, D. Rodríguez-Urrego, y L. Rodríguez-Urrego, “Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects”, Sustain. Energy Technol. Assessments, vol. 36, p. 100531, 2019, doi: https://doi.org/10.1016/j.seta.2019.100531.

J. M. Mej a, F. Chejne, R. Smith, L. F. Rodríguez, O. Fernández, y I. Dyner, “Simulation of wind energy output at Guajira, Colombia”, Renew. Energy, vol. 31, n. 3, pp. 383–399, 2006, doi: 10.1016/j.renene.2005.03.014.

Departamento Administrativo Nacional de Estadística,“índice de precios al consumidor”, 2022[en línea]. Disponible: https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-ycostos/indice-de-precios-al-consumidor-ipc/ipcinformacion-tecnica.

Unidad de Planeación Minero-Energética, “Determinación de los costos de racionamiento de electricidad y gas natural”, 2016.

Unidad de Planeación Minero-Energética, “Plan Energético Nacional Colombia: Ideario Energético 2050”, 2015.

Unidad de Planeación Minero-Energética, “Generación aprobada”, 2021 [en línea]. Disponible: h t t p s : / / p u b l i c . t a b l e a u . c om/pro f i l e /upme#!/vizhome/GeneracionAprobada/GeneracionAprobada (accedido 3 de marzo, 2021).

H. Ahlborg, “Towards a conceptualization of power in energy transitions”, Environ. Innov. Soc. Transitions, vol. 25, pp. 122–141, 2017, doi: 10.1016/j.eist.2017.01.004.

J. Köhler et al., “An agenda for sustainability transitions research: State of the art and future directions”, Environ. Innov. Soc. Transitions, vol. 31, n. December 2018, pp. 1–32, 2019, doi: 10.1016/j.eist.2019.01.004.

A. Cherp, V. Vinichenko, J. Jewell, E. Brutschin, y B. Sovacool, “Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework”, Energy Res. Soc. Sci., vol. 37, n. November 2017, pp. 175–190, 2018, doi: 10.1016/j.erss.2017.09.015.

A. A. Juárez, A. M. Ara jo, J. S. Rohatgi, y O. D. Q. De Oliveira Filho, “Development of the wind power in Brazil: Political, social and technical issues”, Renew. Sustain. Energy Rev., vol. 39, pp. 828–834, 2014, doi: 10.1016/j.rser.2014.07.086.

C. R. Gómez, S. Arango-Aramburo, y E. R. Larsen, “Construction of a Chilean energy matrix portraying energy source substitution: A system dynamics approach”, J. Clean. Prod., vol. 162, pp. 903–913, 2017, doi: 10.1016/j.jclepro.2017.06.111.

E. A. Moallemi, F. de Haan, J. Kwakkel, y L. Aye, “Narrative-informed exploratory analysis of energy transition pathways: A case study of India”s electricity sector”, Energy Policy, vol. 110, pp. 271–287, ago. 2017, doi: 10.1016/j.enpol.2017.08.019.

L. Cardenas, M. Zapata, C. J. Franco, y I. Dyner, “Assessing the combined effect of the diffusion of solar rooftop generation, energy conservation and efficient appliances in households”, J. Clean. Prod., vol. 162, pp. 491–503, 2017, doi: 10.1016/j.jclepro.2017.06.068.

D. R a, M. Castaneda, S. Zapata, y I. Dyner, “Simulating the efficient diffusion of photovoltaics in Bogot : An urban metabolism approach”, Energy, vol. 195, p. 117048, 2020, doi: 10.1016/j.energy.2020.117048.

A. A. Radomes y S. Arango, “Renewable energy technology diffusion: An analysis of photovoltaicsystem support schemes in Medellín, Colombia”, J. Clean. Prod., vol. 92, pp. 152–161, 2015, doi:10.1016/j.jclepro.2014.12.090.