Evaluación de la reducción de la concentración de cefalexina en solución acuosa por electrocoagulación con electrodos de grafito a diferentes valores de pH inicial e intensidad de corriente aplicada

Contenido principal del artículo

Cristian David David Camacho Ramírez
https://orcid.org/0000-0002-5539-8488
Maira Alejandra Forero Ávila
https://orcid.org/0000-0001-6971-2119
Rafael Nikolay Agudelo Valencia
https://orcid.org/0000-0002-6646-7725
Siby Inés Garcés Polo
https://orcid.org/0000-0001-5892-8205

Resumen

Esta investigación se llevó a cabo para evaluar la reducción de la concentración de cefalexina (CEF), en solución acuosa por medio de electrocoagulación (EC) con electrodos de grafito como alternativa de eliminación de este contaminante en las aguas residuales. En primer lugar, se ajustó la conductividad eléctrica del agua con NaCl, lo que permitió la formación de especies de cloro activo (HOCl y OCl-). Se emplearon electrodos de grafito debido a sus características frente al desgaste del ánodo, que ocurre con los sistemas en los cuales se emplean ánodos metálicos. Se analizó el efecto del pH inicial de la solución (7 y 8) y la intensidad de corriente aplicada (1 A y 1,5 A). Para evaluar el efecto de estas variables, se implementó un diseño experimental de tipo central compuesto y la metodología de superficie de respuesta. Adicionalmente, se determinó las condiciones de las variables de estudio las cuales permiten alcanzar la mayor efectividad del proceso. Se determinó que a un nivel de pH 7 y una intensidad de 1,5 A se alcanza una remoción del 75,5 % en la concentración de cefalexina. Para un pH 8 se observa una considerable disminución del porcentaje de reducción de concentración de cefalexina, esta situación implica que la variable que presenta mayor influencia sobre la variable de respuesta es el pH de la solución acuosa.

Citas

[1] H. Kaur, G. Hippargi, G. R. Pophali, y A. K. Bansiwal, “Treatment methods for removal of pharmaceuticals and personal care products from domestic wastewater”, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, (pp. 129–150). Elsevier, 2019. doi: 10.1016/B978-0-12-816189-0.00006-8
[2] H. W. Leung, T. B. Minh, M. B. Murphy, J. C Lam, M. K. So, M. Martin, P. K Lam, y B. J. Richardson, “Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China”, Environ. Int., vol. 42, no. 1, pp. 1–9, 2012. doi: 10.1016/j.envint.2011.03.004.
[3] V. Homem, y L. Santos, “Degradation and removal methods of antibiotics from aqueous matrices - A review”, J. Environ. Manage., vol. 92, no. 10, pp. 2304–2347, 2011. doi: 10.1016/j.jenvman.2011.05.023.
[4] L. A. Perea, R. E. Palma-Goyes, J. Vazquez-Arenas, I. Romero-Ibarra, C. Ostos, and R. A. Torres-Palma, “Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent”, Sci. Total Environ., vol. 648, pp. 377–387, 2019. doi: 10.1016/j.scitotenv.2018.08.148.
[5] C. Su, X. Lin, P. Zheng, Y. Chen, L. Zhao, Y. Liao, y J. Liu, “Effect of cephalexin after heterogeneous Fenton-like pretreatment on the performance of anaerobic granular sludge and activated sludge”, Chemosphere, vol. 235, pp. 84–95, 2019. doi: 10.1016/j.chemosphere.2019.06.136.
[6] J. Xu, Y. Li, M. Qian, J. Pan, J. Ding, y B. Guan, “Amino-functionalized synthesis of MnO2-NH2-GO for catalytic ozonation of cephalexin”, Appl. Catal. B Environ., vol. 256, p. 117797, 2019. doi: 10.1016/j.apcatb.2019.117797.
[7] A. Almasi, R. Esmaeilpoor, H. Hoseini, V. Abtin, y M. Mohammadi, “Photocatalytic degradation of cephalexin by UV activated persulfate and Fenton in synthetic wastewater: optimization, kinetic study, reaction pathway and intermediate products”, J. Environ. Heal. Sci. Eng., vol. 18, no. 2, pp. 1359-1373, 2020. doi: 10.1007/s40201-020-00553-1.
[8] H. R. Pouretedal, y N. Sadegh, “Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood”, J. Water Process Eng., vol. 1, pp. 64–73, 2014, doi: 10.1016/j.jwpe.2014.03.006.
[9] R. S. C. Sierra, H. Zúñiga-Benítez, y G. A. Peñuela, “Experimental data on antibiotic cephalexin removal using hydrogen peroxide and simulated sunlight radiation at lab scale: Effects of pH and H2O2”, Data Brief, vol. 30, p. 105437, 2020, doi: 10.1016/j.dib.2020.105437.
[10] T. J. Al-Musawi, H. Kamani, E. Bazrafshan, A. H. Panahi, M. F. Silva, y G. Abi, “Optimization the Effects of Physicochemical Parameters on the Degradation of Cephalexin in Sono-Fenton Reactor by Using Box-Behnken Response Surface Methodology”, Catal. Letters, vol. 149, pp. 1186–1196, 2019, doi: 10.1007/s10562-019-02713-x.
[11] N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zou, L. Kong, y H. Cui, “Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light”, Chem. Eng. J., vol. 352, no. 15, pp. 412–422, 2018, doi: 10.1016/j.cej.2018.07.038.
[12] M. Aram, M. Farhadian, A. R. Solaimany Nazar, S. Tangestaninejad, P. Eskandari, y B. H. Jeon, “Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection”, J. Mol. Liq., vol. 304, no. 15, p. 112764, 2020, doi: 10.1016/j.molliq.2020.112764.
[13] J. He, Y. Zhang, Y. Guo, G. Rhodes, J. Yeom, H. Li, y W. Zhang, “Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms”, Environ. Int., vol. 132, no. April, p. 105105, 2019, doi: 10.1016/j.envint.2019.105105.
[14] B. Wang, H. Li, T. Liu, y J. Guo, “Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors”, Chemosphere, vol. 263, p. 128224, 2021, doi: 10.1016/j.chemosphere.2020.128224.
[15] A. A. Al-Gheethi, A. N. Efaq, R. M. Mohamed, I. Norli, y M. O. Kadir, “Potential of bacterial consortium for removal of cephalexin from aqueous solution”, J. Assoc. Arab Univ. Basic Appl. Sci., vol. 24, no. 1, pp. 141–148, 2017, doi: 10.1016/j.jaubas.2016.09.002.
[16] G. Rhodes, Y. H. Chuang, R. Hammerschmidt, W. Zhang, S. A. Boyd, y H. Li, “Uptake of cephalexin by lettuce, celery, and radish from water,”, Chemosphere, vol. 263, p. 127916, 2021, doi: 10.1016/j.chemosphere.2020.127916.
[17] E. Angulo, L. Bula, I. Mercado, A. Montaño, y N. Cubillán, “Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction”, Bioresour. Technol., vol. 257, pp. 17–22, 2017, 2018, doi: 10.1016/j.biortech.2018.02.079.
[18] M. Leili, N. Shirmohammadi Khorram, K. Godini, G. Azarian, R. Moussavi, y A. Peykhoshian, “Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process”, J. Mol. Liq., vol. 313, no. 1, p. 113556, 2020, doi: 10.1016/j.molliq.2020.113556.
[19] J. M. Aquino, M. A. Rodrigo, R. C. Rocha-Filho, C. Sáez, y P. Cañizares, “Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes”, Chem. Eng. J., vol. 184, no. 1, pp. 221–227, 2012, doi: 10.1016/j.cej.2012.01.044.
[20] G. C. C. Yang, Y. C. Chen, H. X. Yang, y C. H. Yen, “Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process”, Chemosphere, vol. 155, pp. 274–282, 2016, doi: 10.1016/j.chemosphere.2016.04.060.
[21] Y. Rashtbari, S. Hazrati, S. Afshin, M. Fazlzadeh, y M. Vosoughi, “Data on cephalexin removal using powdered activated carbon (PPAC) derived from pomegranate peel”, Data Brief, vol. 20, pp. 1434–1439, 2018, doi: 10.1016/j.dib.2018.08.204.
[22] M. Deborde, y U. von Gunten, “Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review”, Water Research, vol. 42, no. 1–2, pp. 13–51, 2008, doi: 10.1016/j.watres.2007.07.025.
[23] D. A. C. Coledam, M. M. S. Pupo, B. F. Silva, A. J. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, y J. M. Aquino, “Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation”, Chemosphere, vol. 168, pp. 638–647, 2017, doi: 10.1016/j.chemosphere.2016.11.013.
[24] N. Nageswara Rao, M. Rohit, G. Nitin, P. N. Parameswaran, y J. K. Astik, “Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor”, Chemosphere, vol. 76, no. 9, pp. 1206–1212, 2009, doi: 10.1016/j.chemosphere.2009.06.009.
[25] A. L. Giraldo Aguirre, E. D. Erazo Erazo, O. A. Flórez Acosta, E. A. Serna Galvis, y R. A. Torres Palma, “Tratamiento electroquímico de aguas que contienen antibióticos β-lactámicos”, Cienc. E Desarro., vol. 7, no. 1, pp. 21–29, 2016, doi: 10.19053/01217488.4227.

Artículos más leídos del mismo autor/a