Short-term forecast of the consumer price index: Analysis of the electricity cost in the Caribbean Coast of Colombia

Main Article Content

Milton M. Herrera
https://orcid.org/0000-0002-0766-8391
Vanessa Alejandra Cisneros-Sosa
Andrés Fabian Lara-Montañez

Abstract

The Colombian Caribbean Coast is characterized by its favorable conditions for the generation of solar energy. However, they have not yet been exploited in such a way as to allow an adequate energy transition in the country. In this context, the article presents an evaluation of solar energy consumption from two aspects: first, it investigates the profitability of the use of renewable energies applied to the Caribbean region in Colombia. Second, it evaluates through an econometric model the relationship between the implementation of solar energy at the level of consumption demanded by this region, with respect to the per capita income of the Caribbean population. The results show through an econometric model that the payment of this public service will fall on the socioeconomically less favored population. Therefore, this article contributes to understanding the effects of solar energy policies in the Caribbean region of Colombia, which includes a discussion on the limitations of electricity infrastructure in this area of ​​the country.

References

O. C. Silvera, M. V. Chamorro, y G. V. Ochoa, “Wind and solar resource assessment and prediction using artificial neural network and semi-empirical model: case study of the Colombian Caribbean Region”, Heliyon, vol. 7, n. 9, p. e07959, sep. 2021, doi: 10.1016/j.heliyon.2021.e07959.

A. R. L pez et al., “Solar PV generation in Colombia ― A qualitative and quantitative approach to analyze the potential of solar energy market”, Renew. Energy, vol. 148, pp. 1266–1279, 2020, doi: 10.1016/j.renene.2019.10.066.

F. Henao, Y. Rodriguez, J. P. Viteri, and I. Dyner, “Optimising the insertion of renewables in the Colombian power sector”, Renew. Energy, vol. 132, pp. 81–92, 2019, doi: 10.1016/j.renene.2018.07.099.

H. Porras, A. Martínez, M. M. Herrera, U. Jorge, and T. Lozano, “Un análisis de las implicaciones de la falta cobertura de energías renovables en Colombia”, vol. 13, n. 25, pp. 41–52, 2018, doi: 10.26620/uniminuto.inventum.13.25.2018.

C. Viviescas et al., “Contribution of Variable Renewable Energy to increase energy security in Latin America: Complementarity and climate change impacts on wind and solar resources”, Renew. Sustain. Energy Rev., vol. 113, p. 109232, oct. 2019, doi: 10.1016/J.RSER.2019.06.039.

S. Zapata, M. Castaneda, E. Garces, C. J. Franco, and I. Dyner, “Assessing security of supply in a largely hydroelectricity-based system: The Colombian case”, Energy, vol. 156, pp. 444–457, 2018, doi: 10.1016/j.energy.2018.05.118.

M. M. Herrera, I. Dyner, and F. Cosenz, “Assessing the effect of transmission constraints on wind power expansion in northeast Brazil”, Util. Policy, vol. 59, p. 100924, ago. 2019, doi: 10.1016/j.jup.2019.05.010.

M. M. Herrera, I. Dyner, y F. Cosenz, “Benefits from energy policy synchronisation of Brazil”s North-Northeast interconnection”, Renew. Energy, vol. 162, pp. 427–437, 2020, doi: 10.1016/j.renene.2020.08.056.

M. M. Herrera, F. Cosenz, y I. Dyner, “How to support energy policy coordination? Findings from the Brazilian wind industry”, Electr. J., vol. 32, n. 8, 2019, doi: 10.1016/j.tej.2019.106636.

R. A. F. Cardoso J nior, A. Magrini, y A. F. da Hora, “Environmental licensing process of power transmission in Brazil update analysis: Case study of the Madeira transmission system”, Energy Policy, vol. 67, pp. 281–289, 2014, doi: 10.1016/j.enpol.2013.12.040.

R. Mirya, R. Soria, R. Schaeffer, A. Szklo, y L. Saporta, “Contributions to the analysis of ‘Integrating large scale wind power into the electricity grid in the Northeast of Brazil” [Energy 100 (2016) 401–415]”, Energy, vol. 118, pp. 1198–1209, 2017, doi: 10.1016/j.energy.2016.10.138.

P. De Jong, A. Kiperstok, y E. A. Torres, “Economic and environmental analysis of electricity generation technologies in Brazil”, Renew. Sustain. Energy Rev., vol. 52, pp. 725–739, 2015, doi: 10.1016/j.rser.2015.06.064.

I. Dyner, “Energy modelling platforms for policy and strategy support”, J. Oper. Res. Soc., vol. 51, n. 2, pp. 136–144, 2000.

C. Ochoa, I. Dyner, y C. J. Franco, “Simulating power integration in Latin America to assess challenges, opportunities, and threats”, Energy Policy, vol. 61, pp. 267–273, 2013, doi: 10.1016/j.enpol.2013.07.029.

M. Jimenez, C. J. Franco, y I. Dyner, “Diffusion of renewable energy technologies: The need for policy in Colombia”, Energy, vol. 111, pp. 818–829, 2016, doi: 10.1016/j.energy.2016.06.051.

A. Bradshaw, “Regulatory change and innovation in Latin America: The case of renewable energy in Brazil”, Util. Policy, vol. 49, pp. 156–164, 2017, doi: 10.1016/j.jup.2017.01.006.

Y. Zhang, W. Jin, y M. Xu, “Total factor efficiency and convergence analysis of renewable energy in Latin American countries”, Renew. Energy, vol. 170, pp. 785–795, jun. 2021, doi: 10.1016/J.RENENE.2021.02.016.

IRENA, “Global Renewables Outlook: Energy transformation 2050”, International Renewable Energy Agency, 2020 [en línea]. Disponible: https://irena.org/publications/2020/Apr/Global-Renewables-Outlook-2020.

U. Nyambuu y W. Semmler, “Climate Change and the Transition to a Low Carbon Economy – Carbon Targets and the Carbon Budget”, Econ. Model., abr. 2019, doi: 10.1016/J.ECONMOD.2019.04.026.

J. Blazquez, R. Fuentes, y B. Manzano, “On some economic principles of the energy transition”, Energy Policy, vol. 147, n. sept, p. 111807, 2020, doi: 10.1016/j.enpol.2020.111807.

M. Espinosa. I. Cadena, y E. Behrentz, “Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector”, Energy Policy, vol. 124, n. August 2018, pp. 111–122, 2019, doi: 10.1016/j.enpol.2018.09.039.

J. Calderon-Tellez y M. M. Herrera, “Appraising the impact of air transport on the environment: Lessons from the COVID-19 pandemic”, Perspect., vol. 10, p. 100351, mar. 2021, doi: 10.1016/j.trip.2021.100351.

S. Zapata, M. Castaneda, M. Jimenez, A. J. Aristizabal, C. J. Franco, y I. Dyner, “Longterm effects of 100% renewable generation on the Colombian power market”, Sustain. Energy Technol. Assessments, vol. 30, pp. 183–191, feb. 2018, doi: 10.1016/j.seta.2018.10.008.

G. Carvajal-Romo, M. Valderrama-Mendoza, D. Rodríguez-Urrego, y L. Rodríguez-Urrego, “Assessment of solar and wind energy potential in La Guajira, Colombia: Current status, and future prospects”, Sustain. Energy Technol. Assessments, vol. 36, p. 100531, 2019, doi: https://doi.org/10.1016/j.seta.2019.100531.

J. M. Mej a, F. Chejne, R. Smith, L. F. Rodríguez, O. Fernández, y I. Dyner, “Simulation of wind energy output at Guajira, Colombia”, Renew. Energy, vol. 31, n. 3, pp. 383–399, 2006, doi: 10.1016/j.renene.2005.03.014.

Departamento Administrativo Nacional de Estadística,“índice de precios al consumidor”, 2022[en línea]. Disponible: https://www.dane.gov.co/index.php/estadisticas-por-tema/precios-ycostos/indice-de-precios-al-consumidor-ipc/ipcinformacion-tecnica.

Unidad de Planeación Minero-Energética, “Determinación de los costos de racionamiento de electricidad y gas natural”, 2016.

Unidad de Planeación Minero-Energética, “Plan Energético Nacional Colombia: Ideario Energético 2050”, 2015.

Unidad de Planeación Minero-Energética, “Generación aprobada”, 2021 [en línea]. Disponible: h t t p s : / / p u b l i c . t a b l e a u . c om/pro f i l e /upme#!/vizhome/GeneracionAprobada/GeneracionAprobada (accedido 3 de marzo, 2021).

H. Ahlborg, “Towards a conceptualization of power in energy transitions”, Environ. Innov. Soc. Transitions, vol. 25, pp. 122–141, 2017, doi: 10.1016/j.eist.2017.01.004.

J. Köhler et al., “An agenda for sustainability transitions research: State of the art and future directions”, Environ. Innov. Soc. Transitions, vol. 31, n. December 2018, pp. 1–32, 2019, doi: 10.1016/j.eist.2019.01.004.

A. Cherp, V. Vinichenko, J. Jewell, E. Brutschin, y B. Sovacool, “Integrating techno-economic, socio-technical and political perspectives on national energy transitions: A meta-theoretical framework”, Energy Res. Soc. Sci., vol. 37, n. November 2017, pp. 175–190, 2018, doi: 10.1016/j.erss.2017.09.015.

A. A. Juárez, A. M. Ara jo, J. S. Rohatgi, y O. D. Q. De Oliveira Filho, “Development of the wind power in Brazil: Political, social and technical issues”, Renew. Sustain. Energy Rev., vol. 39, pp. 828–834, 2014, doi: 10.1016/j.rser.2014.07.086.

C. R. Gómez, S. Arango-Aramburo, y E. R. Larsen, “Construction of a Chilean energy matrix portraying energy source substitution: A system dynamics approach”, J. Clean. Prod., vol. 162, pp. 903–913, 2017, doi: 10.1016/j.jclepro.2017.06.111.

E. A. Moallemi, F. de Haan, J. Kwakkel, y L. Aye, “Narrative-informed exploratory analysis of energy transition pathways: A case study of India”s electricity sector”, Energy Policy, vol. 110, pp. 271–287, ago. 2017, doi: 10.1016/j.enpol.2017.08.019.

L. Cardenas, M. Zapata, C. J. Franco, y I. Dyner, “Assessing the combined effect of the diffusion of solar rooftop generation, energy conservation and efficient appliances in households”, J. Clean. Prod., vol. 162, pp. 491–503, 2017, doi: 10.1016/j.jclepro.2017.06.068.

D. R a, M. Castaneda, S. Zapata, y I. Dyner, “Simulating the efficient diffusion of photovoltaics in Bogot : An urban metabolism approach”, Energy, vol. 195, p. 117048, 2020, doi: 10.1016/j.energy.2020.117048.

A. A. Radomes y S. Arango, “Renewable energy technology diffusion: An analysis of photovoltaicsystem support schemes in Medellín, Colombia”, J. Clean. Prod., vol. 92, pp. 152–161, 2015, doi:10.1016/j.jclepro.2014.12.090.