Evaluation of the reduction of the cephalexin concentration in aqueous solution by electrocoagulation with graphite electrodes at different initial pH values and applied current intensity

Main Article Content

Cristian David David Camacho Ramírez
https://orcid.org/0000-0002-5539-8488
Maira Alejandra Forero Ávila
https://orcid.org/0000-0001-6971-2119
Rafael Nikolay Agudelo Valencia
https://orcid.org/0000-0002-6646-7725
Siby Inés Garcés Polo
https://orcid.org/0000-0001-5892-8205

Abstract

This researchwas carried out to evaluate the reduction of cephalexin (CEF) concentration in an aqueous solution using electrocoagulation (EC) with graphite electrodes as an alternative to eliminate this pollutant in wastewater. First, the water's electrical conductivity was adjusted with NaCl, that allows the formation of active chlorine species (HOCl and OCl-). Graphite electrodes were used due to their characteristics against anode wear, which occurs with systems in which metallic anodes are used. The effect of the initial pH of the solution (7 and 8) and the intensity of the applied current (1 A and 1,5 A) were analyzed. In order to evaluate the effect of these variables, an experimental design of a central compound type and the response surface methodology were implemented. Additionally, the conditions of the study variables that allow to achieve the greatest effectiveness of the process were determined. It was determined that at pH 7 and an intensity of 1,5 A a removal of 75,5 % is achieved in the cephalexin concentration. For pH 8, a considerable decrease in the percentage of reduction in the concentration of cephalexin is observed, this situation that implies that the variable that has the greatest influence on the response variable is the pH of the aqueous solution.

References

[1] H. Kaur, G. Hippargi, G. R. Pophali, y A. K. Bansiwal, “Treatment methods for removal of pharmaceuticals and personal care products from domestic wastewater”, Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology, (pp. 129–150). Elsevier, 2019. doi: 10.1016/B978-0-12-816189-0.00006-8
[2] H. W. Leung, T. B. Minh, M. B. Murphy, J. C Lam, M. K. So, M. Martin, P. K Lam, y B. J. Richardson, “Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China”, Environ. Int., vol. 42, no. 1, pp. 1–9, 2012. doi: 10.1016/j.envint.2011.03.004.
[3] V. Homem, y L. Santos, “Degradation and removal methods of antibiotics from aqueous matrices - A review”, J. Environ. Manage., vol. 92, no. 10, pp. 2304–2347, 2011. doi: 10.1016/j.jenvman.2011.05.023.
[4] L. A. Perea, R. E. Palma-Goyes, J. Vazquez-Arenas, I. Romero-Ibarra, C. Ostos, and R. A. Torres-Palma, “Efficient cephalexin degradation using active chlorine produced on ruthenium and iridium oxide anodes: Role of bath composition, analysis of degradation pathways and degradation extent”, Sci. Total Environ., vol. 648, pp. 377–387, 2019. doi: 10.1016/j.scitotenv.2018.08.148.
[5] C. Su, X. Lin, P. Zheng, Y. Chen, L. Zhao, Y. Liao, y J. Liu, “Effect of cephalexin after heterogeneous Fenton-like pretreatment on the performance of anaerobic granular sludge and activated sludge”, Chemosphere, vol. 235, pp. 84–95, 2019. doi: 10.1016/j.chemosphere.2019.06.136.
[6] J. Xu, Y. Li, M. Qian, J. Pan, J. Ding, y B. Guan, “Amino-functionalized synthesis of MnO2-NH2-GO for catalytic ozonation of cephalexin”, Appl. Catal. B Environ., vol. 256, p. 117797, 2019. doi: 10.1016/j.apcatb.2019.117797.
[7] A. Almasi, R. Esmaeilpoor, H. Hoseini, V. Abtin, y M. Mohammadi, “Photocatalytic degradation of cephalexin by UV activated persulfate and Fenton in synthetic wastewater: optimization, kinetic study, reaction pathway and intermediate products”, J. Environ. Heal. Sci. Eng., vol. 18, no. 2, pp. 1359-1373, 2020. doi: 10.1007/s40201-020-00553-1.
[8] H. R. Pouretedal, y N. Sadegh, “Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood”, J. Water Process Eng., vol. 1, pp. 64–73, 2014, doi: 10.1016/j.jwpe.2014.03.006.
[9] R. S. C. Sierra, H. Zúñiga-Benítez, y G. A. Peñuela, “Experimental data on antibiotic cephalexin removal using hydrogen peroxide and simulated sunlight radiation at lab scale: Effects of pH and H2O2”, Data Brief, vol. 30, p. 105437, 2020, doi: 10.1016/j.dib.2020.105437.
[10] T. J. Al-Musawi, H. Kamani, E. Bazrafshan, A. H. Panahi, M. F. Silva, y G. Abi, “Optimization the Effects of Physicochemical Parameters on the Degradation of Cephalexin in Sono-Fenton Reactor by Using Box-Behnken Response Surface Methodology”, Catal. Letters, vol. 149, pp. 1186–1196, 2019, doi: 10.1007/s10562-019-02713-x.
[11] N. Li, Y. Tian, J. Zhao, J. Zhang, W. Zou, L. Kong, y H. Cui, “Z-scheme 2D/3D g-C3N4@ZnO with enhanced photocatalytic activity for cephalexin oxidation under solar light”, Chem. Eng. J., vol. 352, no. 15, pp. 412–422, 2018, doi: 10.1016/j.cej.2018.07.038.
[12] M. Aram, M. Farhadian, A. R. Solaimany Nazar, S. Tangestaninejad, P. Eskandari, y B. H. Jeon, “Metronidazole and Cephalexin degradation by using of Urea/TiO2/ZnFe2O4/Clinoptiloite catalyst under visible-light irradiation and ozone injection”, J. Mol. Liq., vol. 304, no. 15, p. 112764, 2020, doi: 10.1016/j.molliq.2020.112764.
[13] J. He, Y. Zhang, Y. Guo, G. Rhodes, J. Yeom, H. Li, y W. Zhang, “Photocatalytic degradation of cephalexin by ZnO nanowires under simulated sunlight: Kinetics, influencing factors, and mechanisms”, Environ. Int., vol. 132, no. April, p. 105105, 2019, doi: 10.1016/j.envint.2019.105105.
[14] B. Wang, H. Li, T. Liu, y J. Guo, “Enhanced removal of cephalexin and sulfadiazine in nitrifying membrane-aerated biofilm reactors”, Chemosphere, vol. 263, p. 128224, 2021, doi: 10.1016/j.chemosphere.2020.128224.
[15] A. A. Al-Gheethi, A. N. Efaq, R. M. Mohamed, I. Norli, y M. O. Kadir, “Potential of bacterial consortium for removal of cephalexin from aqueous solution”, J. Assoc. Arab Univ. Basic Appl. Sci., vol. 24, no. 1, pp. 141–148, 2017, doi: 10.1016/j.jaubas.2016.09.002.
[16] G. Rhodes, Y. H. Chuang, R. Hammerschmidt, W. Zhang, S. A. Boyd, y H. Li, “Uptake of cephalexin by lettuce, celery, and radish from water,”, Chemosphere, vol. 263, p. 127916, 2021, doi: 10.1016/j.chemosphere.2020.127916.
[17] E. Angulo, L. Bula, I. Mercado, A. Montaño, y N. Cubillán, “Bioremediation of Cephalexin with non-living Chlorella sp., biomass after lipid extraction”, Bioresour. Technol., vol. 257, pp. 17–22, 2017, 2018, doi: 10.1016/j.biortech.2018.02.079.
[18] M. Leili, N. Shirmohammadi Khorram, K. Godini, G. Azarian, R. Moussavi, y A. Peykhoshian, “Application of central composite design (CCD) for optimization of cephalexin antibiotic removal using electro-oxidation process”, J. Mol. Liq., vol. 313, no. 1, p. 113556, 2020, doi: 10.1016/j.molliq.2020.113556.
[19] J. M. Aquino, M. A. Rodrigo, R. C. Rocha-Filho, C. Sáez, y P. Cañizares, “Influence of the supporting electrolyte on the electrolyses of dyes with conductive-diamond anodes”, Chem. Eng. J., vol. 184, no. 1, pp. 221–227, 2012, doi: 10.1016/j.cej.2012.01.044.
[20] G. C. C. Yang, Y. C. Chen, H. X. Yang, y C. H. Yen, “Performance and mechanisms for the removal of phthalates and pharmaceuticals from aqueous solution by graphene-containing ceramic composite tubular membrane coupled with the simultaneous electrocoagulation and electrofiltration process”, Chemosphere, vol. 155, pp. 274–282, 2016, doi: 10.1016/j.chemosphere.2016.04.060.
[21] Y. Rashtbari, S. Hazrati, S. Afshin, M. Fazlzadeh, y M. Vosoughi, “Data on cephalexin removal using powdered activated carbon (PPAC) derived from pomegranate peel”, Data Brief, vol. 20, pp. 1434–1439, 2018, doi: 10.1016/j.dib.2018.08.204.
[22] M. Deborde, y U. von Gunten, “Reactions of chlorine with inorganic and organic compounds during water treatment-Kinetics and mechanisms: A critical review”, Water Research, vol. 42, no. 1–2, pp. 13–51, 2008, doi: 10.1016/j.watres.2007.07.025.
[23] D. A. C. Coledam, M. M. S. Pupo, B. F. Silva, A. J. Silva, K. I. B. Eguiluz, G. R. Salazar-Banda, y J. M. Aquino, “Electrochemical mineralization of cephalexin using a conductive diamond anode: A mechanistic and toxicity investigation”, Chemosphere, vol. 168, pp. 638–647, 2017, doi: 10.1016/j.chemosphere.2016.11.013.
[24] N. Nageswara Rao, M. Rohit, G. Nitin, P. N. Parameswaran, y J. K. Astik, “Kinetics of electrooxidation of landfill leachate in a three-dimensional carbon bed electrochemical reactor”, Chemosphere, vol. 76, no. 9, pp. 1206–1212, 2009, doi: 10.1016/j.chemosphere.2009.06.009.
[25] A. L. Giraldo Aguirre, E. D. Erazo Erazo, O. A. Flórez Acosta, E. A. Serna Galvis, y R. A. Torres Palma, “Tratamiento electroquímico de aguas que contienen antibióticos β-lactámicos”, Cienc. E Desarro., vol. 7, no. 1, pp. 21–29, 2016, doi: 10.19053/01217488.4227.

Most read articles by the same author(s)