Artículo de Artículos de Investigación Científica y Tecnológica

Fundamentos micro y macroscópicos de la modificación del asfalto convencional con polímeros: una revisión

Artículo principal

Henry Yecid Bustos Castañeda
Pedro Alexander Sosa Martínez
Nelson Rodríguez Ramírez
Jeimy Natalia Calderón Bustos
Publicado nov 8, 2018

Resumen

Con el pasar de los años el número de vehículos en las ciudades ha aumentado, de igual manera la velocidad a la que transitan y las cargas permitidas. Esto ha limitado la durabilidad de las estructuras de pavimento. Por otra parte, la diversidad de climas y microclimas a los que están sometidos los pavimentos, han acortado fuertemente la vida útil de estas estructuras. Lo anterior ha generado una motivación en los últimos años en mejorar la calidad de estos sistemas con el fin de mejorar el funcionamiento, la durabilidad y su mantenimiento. Para esto el uso de polímeros en un porcentaje y combinación adecuados como modificadores de los asfaltos convencionales, en los últimos años, ha tomado relevancia debido a la mejora de sus propiedades. En este trabajo se muestra una revisión de algunas de las
investigaciones que se han realizado sobre los asfaltos modificados con polímeros en las dos últimas décadas, con el objetivo de presentar los efectos de la incorporación individual, binaria y multicomponente de polímeros elastómeros y plastómeros al ligante convencional. En este sentido, se obtuvo un resumen de los conocimientos actuales sobre el uso de diferentes polímeros en la modificación del asfalto, además la clasificación y revisión de diferentes tipos de sistemas de modificación según los polímeros, también las propiedades físicas y mecánicas de los asfaltos resultantes. En conclusión, la incorporación de polímeros al asfalto mejora algunas de las
propiedades en comparación con el asfalto convencional, adicionalmente cuando las modificaciones son binarias o multicomponentes permiten que los asfaltos resultantes mejoren varias de sus propiedades simultáneamente, lo anterior con algunas limitaciones en temperatura y carga. 

[1] G. Polacco, S. Berlincioni, D. Biondi, J. Stastna y L. Zanzotto, “Asphalt modification with different polyethylene-based polymers”, European Polymer Journal, vol. 41, n.º 12, pp.
2831-2844, 2005.

[2] D. Fuqiang, Y. Xin, L. Shengjie y W. Jianming, “Rheological behaviors and microstructure of SBS/CR composite modified hard asphalt”, Construction and Building Materials, vol. 115, pp. 285-293, 2016.

[3] F. J. Navarro, P. Partal, F. J. Martínez Boza y C. Gallegos, “Novel recycled polyethylene/ground tire rubber/bitumen blends for use in roofing applications: Thermo-mechanical properties”, Polymer Testing, vol. 29, n.º 5, pp. 588-595, 2010.

[4] S. Alonso, L. Medina Torres, R. Zitzumbo y F. Avalos, “Rheology of asphalt and styrene–butadiene blends”, Journal of Materials Science, vol. 45, n.º 10, pp. 2591-2597, 2010.

[5] S. Caro Spinel y A. E. Alvarez Lugo, “Evaluación de la susceptibilidad al daño por humedad de mezclas asfálticas empleando propiedades termodinámicas”, Revista Facultad de Ingeniería, n.º 58, pp. 95-104, 2011.

[6] J. C. Múnera y E. A. Ossa, “Estudio de mezclas binarias Asfalto - Polímero”, Facultad de Ingeniería, n.º 70, pp. 18-33, 2014.

[7] H. A. Rondón Quintna y F. A. Reyez Lizcano, Pavimentos materiales, construcción y diseño, Bogotá: Ecow Ediciones Ltda, 2015.

[8] H. A. Rondón Quintana y F. A. Reyes Lizcano, “Influencia de las condiciones ambientales de la ciudad de Bogotá sobre el comportamiento mecánicos de una mezcla asfáltica”, Revista Ingeniería de Construcción, vol. 24, n.º 2, pp. 195-207, 2009.

[9] D. Aboelkasim y Y. Zhanping, “Small and large strain rheological characterizations of polymer-and crumb rubber-modified asphalt binders”, Construction and Building Materials, vol. 144, pp. 168-177, 2017.

[10] H. Wang y I. Al Qadi, “Evaluation of surface-related pavement damage due to tire braking”, Road Materials and Pavement Design, vol. 11, n.º 1, pp. 101-122, 2010.

[11] J. Baek, H. Ozer, H. Wang y I. Al Qadi, “Effects of interface conditions on reflective cracking development in hot-mix asphalt overlays”, Road Materials and Pavement Design, vol. 11, n.º 2, pp. 307-334, 2010.

[12] M. Liang, X. Xin, W. Fan, H. Wang, S. Ren y J. Shi, “Effects of polymerized sulfur on rheological properties, morphology and stability of SBS modified asphalt”, Construction and Building Materials, vol. 150, pp. 860-871, 2017.

[13] D. Alves Gama, J. M. Rosa Júnior, T. J. Alves de Melo y J. K. GuedesRodrigues, “Rheological studies of asphalt modified with elastomeric polymer”, Construction and Building Materials, vol. 106, pp. 290-295, 2016.

[14] J. Munera y E. Ossa, “Polymer modified bitumen: Optimization and selection”, Materials & Design, pp. 91-97, 2014.

[15] G. Polacco, S. Filippi, F. Merusi y G. Stastna, “A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility”,
Advances in Colloid and Interface Science, vol. 224, pp. 72-112, 2015.

[16] R. Raqiqatur, W. Shifeng, Z. Yong, L. Yue y Z. Guangtai, “Improving the aging resistance of SBS modified asphalt with the addition of highly reclaimed rubber”, Construction and Building Materials, vol. 145, pp. 126-134, 2017.

[17] Z. Niloofar Kalantar, M. Rehan Karim y A. Mahrez, “A review of using waste and virgin polymer in pavement”, Construction and Building Materials, vol. 33, pp. 55-62, 2012.

[18] Y. Yildirim, “Polymer modified asphalt binders”, Construction and Building Materials, vol. 21, pp. 66-72, 2007.

[19] L. Xiaohu y I. Ulf, “Modification of road bitumens with thermoplastic polymers”, Polymer Testing, vol. 20, nº 1, pp. 77-86, 2000.

[20] C. Brovelli, M. Crispino, J. Pais y P. Pereira, “Using polymers to improve the rutting resistance of asphalt concrete”, Construction and Building Materials, vol. 77, pp. 117-123, 2015.

[21] A. Montejo, Ingeniería de pavimentos para carreteras, Bogotá: Universidad Católica de Colombia, Ediciones y publicaciones, 2002.

[22] O. J. Reyes Ortiz y J. F. Camacho Tauta, “Efecto de la radiación ultravioleta en las propiedades mecánicas”, Ingeniería e investigación, vol. 28, n.º 3, pp. 22-27, 2008.

[23] H. A. Rondón Quintana y F. A. Reyes Lizcano, “Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con un desecho de PVC”, Tecno Lógicas, n.º 27, pp. 11-31, 2011.

[24] Y. Becker, M. P. Méndez y Y. Rodríguez, “Polymer modified asphalt”, Vision tecnológica, vol. 9, n.º 1, pp. 39-50, 2001.

[25] B. Sengoz, A. Topal y G. kyakar, “Morphology and image analysis of polymer modified bitumens”, Construction and Building Materials, vol. 23, n.º 5, pp. 1986-1992, 2009.

[26] H. A. Rondón Quintana, E. Rodríguez Rincón y L. Á. Moreno Anselmi, “Resistencia mecánica evaluada en el ensayo marshall de mezclas densas en caliente elaboradas con asfaltos modificados con desechos de policloruro de vinilo (PVC), polietileno de alta densidad (PEAD) y poliestireno (PS)”, Revista Ingenierías, vol. 6, n.º 11, pp. 91-104, 2007.

[27] L. Socal da Silva, M. M. Camargo Forte, L. Alencastro Vignol y N. S. Medeiros Cardozo, “Study of rheological properties of pure and polymer-modified Brazilian asphalt binders”, Journal of Materials Science, vol. 39, n.º 2, p. 539–546, 2004.

[28] F. Navarro, P. Partal, F. Martínez Boza, C. Valencia y C. Gallegos, “Rheological characteristics of ground tire rubber-modified bitumens”, Chemical Engineering Journal, vol.
89, n.º 1-3, pp. 53-61, 2002.

[29] C. Maharaj, R. Maharaj y J. Maynard, “The effect of polyethylene terephthalate particle size and concentration on the properties of asphalt and bitumen as an additive”, Progress in Rubber, Plastics and Recycling Technology, vol. 31, n.º 1, pp. 1-23, 2015.

[30] H. A. Rondón Quintana, F. A. Reyes Lizcano, A. S. Figueroa Infante, E. Rodríguez Rincón, C. M. Real Triana y T. A. Montealegre Elizalde, “Estado del conocimiento del estudio sobre mezclas asfálticas modificadas en Colombia”, Infraestructura Vial, n.º 19, pp. 10-20, 2008.

[31] A. Gordon D, “Rheological evaluation of ethylene vinyl acetate polymer modified bitumens”, Construction and Building Materials, vol. 16, n.º 8, pp. 473-487, 2002.

[32] W. A. Castro López, H. A. Rondón Quintana y J. C. Barrero Calixto, “Evaluación de las propiedades reológicas y térmicas de un asfalto convencional y uno modificado con un desecho de pebd”, Revista Ingeniería, vol. 21, n.º 1, pp. 7-18, 2015.

[33] Z. You, J. Mills Beale, J. M. Foley, S. Roy, G. M. Odegard, Q. Dai y S. W. Goh, “Nanoclay- modified asphalt materials: Preparation and characterization”, Construction and
Building Materials, vol. 25, n.º 2, pp. 1072- 1078, 2011.

[34] A. Gordon D., “Rheological properties of styrene butadiene styrene polymer modified road bitumens”, Fuel, vol. 82, n.º 14, pp. 1709-1719, 2003.

[35] C. Diehl, “Ethylene–styrene interpolymers for bitumen modification”, Proc Second Eurasphalt Eurobitume Congress, vol. 2, pp. 93-102, 2000.

[36] C. M. Díaz Claros y L. C. Castro Celis, “Implementación del grano de caucho reciclado (GCR) proveniente de llantas usadas para mejorar las mezclas asfálticas y garantizar pavimentos sostenibles en Bogotá”, Monografía de grado, Universidad Santo Tomás, 2017.

[37] F. A. Reyes Lizcano, C. E. Daza y H. A. Rondón Quintana, “Determinación de las fracciones SARA de asaltos colombianos envejecidos al medio ambiente empleando cromatografía líquida en columna”, revista EIA, n.º 17, pp. 47- 56, 2012.

[38] J. P. Aguiar Moya, J. Salazar Delgado, V. Bonilla Mora, E. Rodríguez Castro, F. Leiva Villacorta y L. Loría Salazar, “Morphological analysis of bitumen phases using atomic
force microscopy”, Road Materials and Pavement Design, vol. 16, pp. 138-152, 2015.

[39] E. R. Dourado, R. A. Simão y L. Leite, “Mechanical properties of asphalt binders evaluated by atomic force microscopy”, Journal of Microscopy, vol. 245, n.º 2, pp. 119-128,
2012.

[40] X. Vargas, N. Afanasjeva, M. Álvares, P. Marchal y L. Choplin, “Evolución del comportamiento viscoelástico del asfalto inducida bajo termo-oxidación in situ en un reo-reactor”, Dyna, vol. 75, n.º 155, pp. 191-198, 2008.

[41] M. Wang y L. Liu, “Investigation of microscale aging behavior of asphalt binders using atomic force microscopy”, Construction and Building Materials, vol. 135, pp. 411-419, 2017.

[42] L. Rebelo, J. Sousa, A. Abreu, M. Baroni, A. Alencar, S. Soares, J. Mendes Filho y J. Soares, “Aging of asphaltic binders investigated with atomic force microscopy”, Fuel, vol.
117, pp. 15-25, 2014.

[43] L. Peng, H. Weidong, L. Yi, N. Tang y X. Feipeng, “Investigation of influence factors on low temperature properties of SBS modified asphalt”, Construction and Building Materials, vol. 154, pp. 609-622, 2017.

[44] D. Fuqiang, Z. Wenzhe, Z. Yuzhen, W. Jianming, F. Weiyu, Y. Yanjie y W. Zhe, “Influence of SBS and asphalt on SBS dispersion and the performance of modified asphalt”, Construction and Building Materials, vol. 62, pp. 1-7, 2014.

[45] D. O. Larsen, J. L. Alessandrini, A. Bosch y M. S. Cortizo, “Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing”, Construction and Building Materials, vol. 23, n.º 8, pp. 2769- 2774, 2009.

[46] L. Á. Moreno Anselmi y D. A. Calvo López, “Estudio mecánico del asfalto modificado con polímeros y cueros que son utilizados en la elaboración del calzado”, L’esprit Ingénieux, n.º 5, pp. 14-22, 2014.

[47] S. Alam y Z. Hossain, “Changes in fractional compositions of PPA and SBS modified asphalt binders”, Construction and Building Materials, vol. 152, pp. 386-393, 2017.

[48] M. Liang, P. Liang, W. Fan, C. Qian, X. Xin, J. Shi y G. Nan, “Thermo-rheological behavior and compatibility of modified asphalt with various styrene-butadiene structures in SBS copolymers”, Materials and Design, vol. 88, p. 177-185, 2015.

[49] G. Hernández, E. Medina, R. Sánchez y A. Mendoza, “Thermomechanical and rheological asphalt modification using styrene-butadiene triblock copolymers with different microstructure”, Energy & Fuels, vol. 20, pp. 2623-2626, 2006.

[50] C. Ouyang, S. Wang, Y. Zhang y Y. Zhang, “Preparation and properties of styrene–butadiene–styrene copolymer/kaolinite clay compound and asphalt modified with the compound”, Polymer Degradation and Stability, vol. 87, n.º 2, pp. 309-317, 2005.

[51] P. Tang, L. Mo, C. Pan, H. Fang, B. Javilla y M. Riara, “Investigation of rheological properties of light colored synthetic asphalt binders containing different polymer modifiers”, Construction and Building Materials, vol. 161, pp. 175-185, 2018.

[52] H. Jutao, C. Pengyun, L. Zenghong, W. Zhengxing y X. Shifa, “Developing of a SBS polymer modified bitumen to avoid low temperature cracks in the asphalt facing of a reservoir in a harsh climate region”, Construction and Building Materials, vol. 150, pp. 105-113, 2017.

[53] Y. Yang, Y. Liu, J. Zhu y M. Gao, “Study and performance test of high module pavement asphalt”, Journal of Alloys and Compounds, vol. 455, pp. 1-4, 2008.

[54] R. Zhang, H. Wang, J. Gao, Z. You y X. Yang, “High temperature performance of SBS modified bio-asphalt”, Construction and Building Materials, vol. 144, pp. 99-105, 2017.

[55] H. Yaacob, M. Ali Mughal, R. Putra Jaya, M. Rosli Hainin, D. Sri Jayanti y C. N. Che Wan, “Rheological properties of styrene butadiene rubber modified bitumen binder”, Jurnal Teknologi, vol. 78, n.º 7-2, pp. 121-126, 2016.

[56] H. Soenen, J. De Visscher, A. Vanelstraete y P. Redelius, “Influence of thermal history on rheological properties of various bitumen”, Rheologica Acta, vol. 45, n.º 5, p. 729-739, 2006.

[57] H. Gengren, H. Weidong, Y. Jie, T. Naipeng y X. Feipeng, “Effect of aging on chemical and rheological properties of SBS modified asphalt with different compositions”, Construction and Building Materials, vol. 156, pp. 902-910, 2017.

[58] L. Xiaohu y I. Ulf, “Influence of styrene-butadiene-styrene polymer modification on bitumen viscosity”, Fuel, vol. 76, n.º 14-15, pp. 1353-1359, 1997.

[59] H. Fu, L. Xie, D. Daying, L. Li, M. Yu y S. Yao, “Storage stability and compatibility of asphalt binder modified by SBS graft copolymer”, Construction and Building Materials,
vol. 21, n.º 7, pp. 1528-1533, 2007.

[60] M. Liang, X. Xin, F. Weiyu, H. Luo, X. Wang y B. Xing, “Investigation of the rheological properties and storage stability of CR/SBS modified asphalt”, Construction and Building Materials, vol. 74, pp. 235-240, 2015.

[61] G. Wen, Y. Zhang, Y. Zhang, K. Sun y Y. Fan, “Rheological characterization of storage-stable SBS-modified asphalts”, Polymer Testing, vol. 21, n.º 3, pp. 295-302, 2002.

[62] J. Chen y C. Huang, “Fundamental characterization of SBS-modified asphalt mixed with sulfur”, Journal of Applied Polymer Science, vol. 103, n.º 5, pp. 2817-2825, 2006.

[63] A. Khadivar y A. Kavussi, “Rheological characteristics of SBR and NR polymer modified bitumen emulsions at average pavement temperatures”, Construction and Building Materials, vol. 47, pp. 1099-1105, 2013.

[64] C. V. Palma, J. C. Ortiz Cisneros, F. Ávalos Belmonte y A. Castañeda Facio, “Modificación de asfalto con elastómeros para su uso en pavimentos”, Afinidad LXXIII, vol. 554, pp. 119-124, 2016.

[65] J. Zhu, B. Birgisson y N. Kringos, “Polymer modification of bitumen: Advances and challenges”, European Polymer Journal, vol. 54, pp. 18-38, 2014.

[66] Y. Becker, M. P. Méndez y Y. Rodríguez, “Polymer modified asphalt”, Visión tecnológica, vol. 9, n.º 1, pp. 39-50, 2001.

[67] S. Abbas Tabatabaei, A. Kiasat y F. Karimi Alkouhi, “The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen”, International Scholarly and Scientific Research & Innovation, vol. 7, n.º 10, pp. 785-788, 2013.

[68] S. M. Sargand y S.-S. Kim, “Performarce evaluation of polymer modified and unmodified superpave pixes”, in Second International Symposium on Maintenance and Rehabilitation of Pavements and Technological Control, Auburn, Alabama, 2001.

[69] A. H. Albayati y H. Kariem Mohammed, “Influence of stryrene butadiene rubber on the mechanical properties of asphalt concrete”, Al-Qadisiya Journal For Engineering Sciences, vol. 4, n.º 3, pp. 258-274, 2011.

[70] Y. Becker, M. Meondez y Y. Rodriguez, “Polymer modified asphalt”, VisTechnologies AS, vol. 9, n.º 1, pp. 39-50, 2001.

[71] Z. Zhang y J. Yu, “The research for high-performance SBR compound modified asphalt”, Construction and Building Materials, vol. 24, n.º 3, pp. 410-418, 2010.

[72] P. Cong, P. Xun, M. Xing y S. Chen, “Investigation of asphalt binder containing various crumb rubbers and asphalts”, Construction and Building Materials, vol. 40, pp. 632-641, 2013.

[73] M. Sienkiewicz, J. Kucinska Lipka, H. Janik y A. Balas, “Progress in used tyres management in the European Union: a review”, Waste Management, vol. 32, pp. 1742-1751, 2012.

[74] S. Rafat, K. Jamal y K. Inderpreet, “Use of recycled plastic in concrete: A review”, Waste Management, vol. 28, n.º 10, pp. 1835-1852, 2008.

[75] A. M. Dueñas Rodríguez y S. A. Calume Figueroa, “Recopilación y análisis sobre el uso del grano de caucho modificado (CMR) para lautilización por vía seca en el diseño de carpetas asfálticas en Bogota”, Trabajo de grado, Facultad de Ingeniería, Universidad Santo Tomás, 2017.

[76] L. P. Fontes, G. Trichês, J. C. Pais y P. A. Pereira, “Evaluating permanent deformation in asphalt rubber mixtures”, Construction and Building Materials, vol. 24, n.º 7, pp.
1193-1200, 2010.

[77] C. Chui Te y L. Li Cheng, “A laboratory study on stone matrix asphalt using ground tire rubber”, Construction and Building Materials, vol. 21, pp. 1027-1033, 2007.

[78] M. Partl, E. Pasquini, F. Canestrar y A. Virgili, “Analysis of water and thermal sensitivity of open graded AR mixtures”, Construction and Building Materials, vol. 24, pp. 283-291, 2010.

[79] H. Wang, Z. You, J. Mills Beale y P. Hao, “Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber”, Construction and Building Materials, vol. 26, pp. 583-590, 2012.

[80] D. Zhang, X. Huang, Y. Zhao y S. Zhang, “Rubberized asphalt mixture design using a theoretical model”, Construction and Building Materials, vol. 67, pp. 265-269, 2014.

[81] F. Navarro, P. Partal, F. Martínez Boza y C. Gallegos, “Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens”, Fuel, vol. 83, pp. 2041-2049, 2004.

[82] A. Tortum, C. Celik y A. Cuneyt Aydin, “Determination of the optimum conditions for tire rubber in asphalt concret”, Building and Environment, vol. 40, pp. 1492-1504, 2005.

[83] X. Ding, T. Ma, W. Zhang y D. Zhang, “Experimental study of stable crumb rubber asphalt and asphalt mixture”, Construction and Building Materials, vol. 157, pp. 975-981, 2017.

[84] V. González, F. Martínez Boza, F. Navarro, C. Gallegos, A. Pérez Lepe y A. Páez, “Thermomechanical properties of bitumen modified with crumb tire rubber and polymeric additives”, Fuel Processing Technology, vol. 91, n.º 9, pp. 1033-1039, 2010.

[85] Y. Doh, K. Yun, S. Amirkhanian y K. Kim, “Framework for developing a static strength test for measuring deformation resistance of asphalt concrete mixtures”, Construction and Building Materials, vol. 21, pp. 2047-2058, 2007.

[86] S. Oda, J. Leomar Fernandes Jr y J. Sereni Ildefonso, “Analysis of use of natural fibers and asphalt rubber binder in discontinuous asphalt mixtures”, Construction and Building Materials, vol. 26, pp. 13-20, 2012.

[87] Q. Li, F. Ni,. L. Gao, Q. Yuan y Y. Xiao, “Evaluating the rutting resistance of asphalt mixtures using an advanced repeated load permanent deformation test under field conditions”, Construction and Building Materials, vol. 61, pp. 241-251, 2014.

[88] V. S. Punith y A. Veeraragavan, “Behavior of asphalt concrete mixtures with reclaimed polyethylene as additive”, Journal of Materials in Civil Engineering, vol. 19, n.º 6, pp.
500-507, 2007.

[89] K. Yan, H. Xu y L. You, “Rheological properties of asphalts modified by waste tire rubber and reclaimed low density polyethylene”, Construction and Building Materials, vol. 83, pp. 143-149, 2015.

[90] M. Murphy, M. O’Mahony, C. Lycett y I. Jamieson, “Bitumens modified with recycled polymers”, Materials and Structures, vol. 33, n.º 231, pp. 438-44, 2000.

[91] I. A. Hussein, I. M. H. y H. I. Al-Abdul-Wahhab, “Influence of Mw of LDPE and vinyl acetate content of EVA on the rheology of polymer modified asphalt”, Rheologica Acta, pp. 92- 104, 2005.

[92] F. Changqing, Z. Ying, Y. Qian, Z. Xing, G. Dagang, Y. Ruien y Z. Min, “Preparation, characterization and hot storage stability of asphalt modified by waste polyethylene packaging”, Journal of Materials Science & Technology, vol. 29, n.º 5, pp. 434-438, 2013.

[93] A. Pérez Lepe, F. Martínez, C. González, O. Gallegos, M. Muñoz y A. Santamaría, “Influence of the processing ified bitumeconditions on the rheological behaviour of polymer modified bitumen”, Fuel, pp. 1339-1348, 2003.

[94] A. Fawcett, T. McNally, G. McNally, F. Andrews y J. Clarke, “Blends of bitumen with polyethylenes”, Polymer, vol. 40, pp. 6337–6349, 1999.

[95] Y. Edwards, Y. Tasdemir y U. Isacsson, “Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220 – high and medium temperature performance”, Construction and Building Materials, vol. 21, pp. 1899-1908, 2007.

[96] N. Uğur Koçkal y S. Köfteci, “Aggressive Environmental Effect on Polypropylene Fibre Reinforced Hot Mix Asphalt”, Procedia Engineering, vol. 161, pp. 963-969, 2016.

[97] P. Ahmedzade, K. Demirelli, T. Günay, F. Biryan y O. Alqudah, “Effects of Waste Polypropylene Additive on the Properties of Bituminous Binder”, Procedia Manufacturing, vol. 2, pp. 165-170, 2015.

[98] J. Zhu, B. Birgisson y N. Kringos, “Polymer modification of bitumen: Advances and challenges”, European Polymer Journal, vol. 54, pp. 18-38, 2014.

[99] P. Lastra González, M. A. Calzada Pérez, D. Castro Fresno, Á. Vega Zamanillo y I. Indacoechea Vega, “Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste”, Construction and Building Materials, vol. 112, pp. 1133-1140, 2016.

[100] S. Tapkin, “The effect of polypropylene fibers on asphalt performance”, Building and Environment, vol. 43, pp. 1065-1071, 2008.

[101] M. Sadeque y K. A. Patil, “Rheological properties of recycled low density polyethylene and polypropylene modified bitumen”, International Journal of Advanced Technology in Civil Engineering, vol. 2, n.º 2, pp. 24-26, 2013.

[102] A. Behl, G. Sharma y G. Kumar, “A sustainable approach: Utilization of waste PVC in asphalting of roads”, Construction and Building Materials, vol. 54, pp. 113-117, 2014.

[103] H. A. Rondón Quintana y M. L. Guzmán Millán, “Influencia de la granulometría sobre la resistencia mecánica de una mezcla asfáltica modificada con desecho de policloruro de vinilo (PVC)”, Studiositas, vol. 5, n.º 3, pp. 69-84, 2010.

[104] H. A. Rondón Quintana, F. A. Reyes Lizcano y B. E. Ojeda Martínez, “Comportamiento de una mezcla densa de asfalto en caliente modificada con desecho de policloruro de vinilo”, Ciencia e Ingeniería Neogranadina, vol. 18, n.º 2, pp. 29-43, 2008.

[105] G. Dongdong, Y. Kezhen, U. Zhanping y X. Hongbin, “Mecanismo de modificación del aglutinante de asfalto con caucho de llanta de desecho y polietileno reciclado”, Construcción y materiales de construcción, vol. 126, pp. 66-76, 2016.

[106] F. Changqing, Y. Ruien, Z. Ying, H. Jingbo, Z. Min y M. Xinghua, “Modificación combinada de asfalto con residuos de envases de polietileno y montmorillonita organofílica”, Prueba de polímeros, vol. 31, n.º 2, pp. 276-281, 2012.

[107] M. García Morales, P. Partal, F. Navarro y C. Gallegos, “Effect of waste polymer addition on the rheology of modified bitumen”, Fuel, vol. 85, n.º 7-8, pp. 936-943, 2006.

[108] H. L. Arenas Lozano, Tecnologías del cemento asfáltico, 5ta ed., Bogotá, Colombia: Faid Editores, 2000.

[109] H. Rondón Quintana, W. Fernández Gómez y W. Castro López, “Evaluación de las propiedades mecánicas de una mezcla densa en caliente modificada con un desecho de polietileno de baja densidad (PEBD)”, Revista Ingeniería de Construcción, vol. 25, n.º 1, pp. 83-94, 2010.

[110] F. A. Reyes Lizcano, C. Guáqueta Echeona, L. M. Porras Salcedo y H. A. Rondón Quintana, “Compotamiento de un cemento asfáltico modificado con desecho de PVC”, Revista Ingenierías, vol. 12, n.º 22, pp. 75-84, 2013.

[111] D. Lesueur, “The colloidal structure of bitumen: Consequences on the rheology and on the mechanisms of bitumen modification”, Advances in Colloid and Interface Science, vol. 145, n.º 1-2, pp. 42-82, 2009.

[112] J. Hailong, G. Guangtao, Z. Yong, Z. Yinxi, S. Kang y F. Yongzhong, “Improved properties of polystyrene-modified asphalt through dynamic vulcanization”, Polymer Testing, vol. 21, n.º 6, pp. 633-640, 2002.

[113] M. Çubuk, M. Gürü y M. K. Çubuk, “Improvement of bitumen performance with epoxy resin”, Fuel, vol. 88, n.º 7, pp. 1324-1328, 2009.

Descargas

La descarga de datos todavía no está disponible.

Detalles de artículos

Cómo citar
Bustos Castañeda, H., Sosa Martínez, P., Rodríguez Ramírez, N., & Calderón Bustos, J. (2018). Fundamentos micro y macroscópicos de la modificación del asfalto convencional con polímeros: una revisión. INVENTUM, 13(24), 58-77. https://doi.org/10.26620/uniminuto.inventum.13.24.2018.58-77
Sección
Artículos de Investigación Científica y Tecnológica