Modeling and calibration of residual chlorine in Epanet software. Case study: Town of Villa de Leyva (Boyacá, Colombia)

Main Article Content

Felipe Santamaria
Juan Sebastián De Plaza Solorzano
Alejandra Caicedo

Abstract

The supply of the aqueduct service integrates an essential factor to access a basic level of quality of life and so avoid the transmission of pathogenic diseases in the population. Within the purification of water resources, the physicochemical process “disinfection” is developed in the treatment plants, where the applied concentration is implemented by the trial method without taking into account the behavior of the disinfectant in the aqueduct networks. Therefore, in the following research developed in the town of Villa de Leyva (department of Boyacá, Colombia) in 2019, the behavior of free residual chlorine in the pipes of the supply network is explained, through the modeling and calibration of 3 stages in the Epanet software, according to the variation of the reaction coefficients (KWall), (KBulk) and the roughness-wall reaction correlation coefficient (F). Carrying out the hydraulic and quality calibration process, in stage n°. 1, a percentage of error between the read and computed values of 11 % for the pressures and 0.3% for the chlorine levels was obtained, according to the coefficients (KWall) y (KBulk) de -0.65 y (F) -2.88 that model the supply network. Having calibrated the first stage, the coefficients obtained were used to start the modeling of the second and third stages. For the case study, it was observed that the behavior of free residual chlorine varies according to the pressures during the day, in the peak consumption intervals the pressures decrease and the levels of the disinfectant increase, due to the fact that the flow is transported with greater rate through the pipes generating less reaction of the chemical agent.

References

E. K. Patil & N. Jariwala, “Determination of Wall-Decay Coefficient (Kw) for Water Distribution System of Dhule City using EPANET”, International Research Journal of Engineering and Technology, vol. 4, no. 3, pp. 1199-1204, 2017. Disponible en: https://n9.cl/otv6u1

Organización Mundial de la Salud, Guías para la calidad del agua potable, vol. 1, 3ª ed. Ginebra: OMS, 2006. Disponible en: https://n9.cl/xngm6

L. A. Rossman, R. M. Clark & W. M. Grayman, “Modeling chlorine residuals in drinking-water distribution systems”, Journal of Environmental Engineering, vol. 120, no. 4, pp. 803-820, 1994. Doi: https://doi.org/10.1061/(ASCE)0733-9372(1994)120:4(803)

V. Tzatchkov, V. H. Alcocer Yamanaka y F. I. Arreguín Cortés, “Decaimiento del cloro por reacción con el agua en redes de distribución”, Tecnología y Ciencias del Agua, vol. 19, no. 1, pp. 41-51, 2004. Disponible en: https://revistatyca.org.mx/ojs/index.php/tyca/article/view/1007

A. T. Tiruneh, T. Y. Debesay, S. J. Nkambule, G. C. Bwembya & L. Zwane, “Variable chlorine decay rate modeling of the matsapha town water network using EPANET Program”, Journal of Water Resource and Protection, vol. 11, no. 1, pp. 37-52, 2019. Doi: https://doi.org/10.4236/jwarp.2019.111003

L. A. Rossman, EPANET 2. Users manual. Cincinnati, OH: Enviromental Protection Agency (EPA), 2000. Disponible en: https://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf

D. V. Zárate Carranza y J. D. Muñoz Carvajal, “Determinación de las características de reacción de cloro libre en la red de abastecimiento del municipio de Villa de Leyva”, tesis Universidad Piloto de Colombia, Bogotá, 2020. Disponible en http://repository.unipiloto.edu.co/handle/20.500. 12277/9390 95

C. N. Haas, “Desinfección”, En American Water Works Association y R. D. Letterman (coords.), Calidad y tratamiento del agua Manual de suministros de agua comunitaria, (pp. 917-940). España: McGraw-Hill Interamericana de España S.L., 2002.

M. C. Vega Sánchez, “Calibración de redes de distribución de agua potable con métodos de inteligencia artificial”, tesis de maestría, Universidad de los Andes, Bogotá, 2007. Disponible en: http://hdl.handle.net/1992/9718

J. C. Powell, J. R. West, N. B. Hallam, C. F. Forster & J. Simms, “Performance of various kinetic models for chlorine decay”, Journal of Water Resources Planning & Management, vol. 126, no. 1, pp. 13-20. Doi: https://doi.org/10.1061/(ASCE)0733-9496(2000) 126:1(13)

P. Jamwal & M. Kumar, “Effect of flow velocity on chlorine decay in water distribution network: a pilot loop study”, Current Science, vol. 111, no. 8, pp. 1349-1354. Doi: https://doi.org/10.18520/CS%2FV111%2FI8%2F1349-1354

C. M. Guanuchi Quezada y J. A. Ordoñez Jara, “Evaluación del cloro residual en la red de distribución de agua potable del Cantón Azogues a través de un modelo experimental”, tesis de grado, Universidad de Cuenca, Cuenca, Ecuador, 2017. Disponible en: http://dspace.ucuenca.edu.ec/handle/123456789/28012

R. M. Clark, J. Yang, C. A. Impellitteri, R. C. Haught, D. A. Schupp, S. Panguluri & E. R. Krishnan, “Chlorine fate and transport in distribution systems: Experimental and modeling studies”, Journal American Water Works Association, vol. 102, no. 5, pp. 144-155. Doi: https://doi.org/10.1002/j.1551-8833.2010.tb10117.x