Use of electroanalytical techniques for the detection of heavy metals in The Ramada river, Tibaitatá village (Mosquera - Cundinamarca)
Main Article Content
Abstract
The present investigation arises from the water resource of the Tibaitatá village, municipality of Mosquera, Cundinamarca. This fence belongs to the La Ramada irrigation district coming from the Bogotá River, having high degrees of contamination since it has passed through more populated municipalities and cities, being affected by the great problems of inadequate deposition of dangerous chemical waste (metals) having with it polluting agents such as are heavy metals, in addition to the fact that these waters are used by producers in the area as irrigation for crops.
In this sense, the detection of heavy metals in bodies of water was proposed through the use of different electroanalytical techniques for which a quantitative and qualitative methodology was carried out with an experimental approach through six work phases: 1 ) Location of the sampling site. 2) Collection of samples in the Tibaitatá village, 3) physicochemical characterization and identification of organoleptic properties such as pH, temperature and voltage, 4) use of the potentiometric technique for the detection of heavy metals, 5) Use of the microscopy technique electronic scanning using an elemental analysis probe by X-ray dispersion (SEM-EDS), 6) Analysis of results and the impact it has on the soil, 7) Socialization and dissemination at events.
The results obtained show that the water contains an acidic pH. On the other hand, in the electrodeposition process using the ITO glass plate, many metals were fixed in the percentage and elemental analysis using the SEM scanning technique in which it was found that there is a greater amount of parts per million of Cu and others. salts, belonging to the group of emerging metals. Now, it is necessary to point out that the low-scale potentiostat satisfies the need to detect and fix heavy metals in liquid samples and these salts also have impacts on the soil that have repercussions on the environment.
References
M. H. Huesemann, “The failure of eco-effciency to guarantee sustainability: Future challenges for industrial ecology”, Environmental Progress, vol. 23, no. 4, pp. 264–270, 2004. Doi: https://doi. org/10.1002/ep.10044
F. Lozano, P. Freire, G. Guillén-Gozalbez, C. Jiménez-Gonzalez, T. Sakao, N. Mac Dowel, M. Ortiz, A. Trianni, A. Carpenter, & T. Viveros, “New perspectives for sustainable resource and energy use, management and transformation: approaches from green and sustainable chemistry and engineering”, Journal of Cleaner Production, vol. 118, pp. 1-3, 2016. Doi: https://doi.org/10.1016/j. jclepro.2016.01.041
J. Rivera Rodríguez, “La química verde como una solución alternativa para el tratamiento de metales pesados en maestrías y programas de doctorado”, tesis doctoral, Universidad Americana de Europa, Cancún, México, 2022.
J. A. Villanueva, “Manual a la nueva nomenclatura electroquímica y su recepción en español”, Revista de Investigación Lingüística, vol. 20, pp. 97- 118. Disponible en: https://www.proquest.com/scholarly-journals/manuala-nueva-nomenclaturaelectroquímica-
y-su/docview/1989169024/se-
J. Winefordner, Chemical Analysis. A Serie of monographs on Analytical Chemistry and its applications, vol. 162, Hoboken: Wiley-
Interscience, 2003.
R.-K. Smith. Guide to Environmental Analytical Methods, 5th ed., Amsterdam: Genium Publishing Corporation, 2008.
F. Rouessac, A. Roussac, & J. Towe, Chemical Analysis. Modern instrumental methods and techniques, New York: John Wiley & Sons, 2004.
P. W. Lee, & J. J. Murphy, eds., Handbook of residua analytical methods for agrochemicals, West Sussex, United Kingdom: John Wiley & Sons, 2003.
J. M. Pingarrón y P. Sánchez, Química electroanalítica. Fundamentos y aplicaciones. Madrid: Editorial Síntesis, 2010.
C. Hernández-Domínguez, P. Álvarez-Muñoz y J. Zapa-Cedeño, “Técnicas analíticas para el control de la contaminación ambiental”, Revista Ciencia UNEMI, vol. 9, no. 20, pp. 118-131, 2016. Disponible en: https://www.redalyc.org/pdf/5826/582663826016.pdf
K. Vinod, R. Daman, A. Sharma, P. Bakshi, G. Singh, A. Bale, I. Karaouzas, R. Bhardwaj, A. Kumar, Y. Gyasi-Agyei, & J. Rodrigo, “Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses”, Chemosphere, vol. 236, 124364, 2019. Doi: https://doi.org/10.1016/j.chemosphere.2019.124364
Hirokazu, H. Contaminación por metales pesados inmutable antes y después del cambio en los residuos industriales. Procedimiento de tratamiento Nature Scientific Reports 1-12 (2019) doi: 10.18632/oncotarget.26726
N. Reza, R. Alam, Z. Ahmed, S. Begumm, & S. Akhter, “Sanitation Status and Waste Disposal Pattern in the Slum Area of Sylhet City Corporation”, Asian Research Journal of Arts & Social Sciences, vol. 9, no. 1, pp. 1-10, 2019. Doi: https://doi. org/10.9734/arjass/2019/v9i130114
F. N. Asubbaie, “Assessment of the levels of some heavy metals in water in Alahsa Oasis farms, Saudi Arabia, with analysis by atomic absorption spectrophotometry”, Arabian Journal of Chemistry, vol. 8, no. 2, pp 240-245, 2015. Doi: https://doi.org/10.1016/j.arabjc.2011.08.018
C. Sánchez Vallarino, “Detección de los metales pesados en agua”, tesis de maestría, Instituto Nacional de Astrofísica, Óptica y Electrónica, Puebla, México, 2011. Disponible en: https://inaoe.repositorioinstitucional.mx/jspui/bitstream/1009/671/1/ChavezVC.pdf
A. L. Trujillo, P. Vega y L. Barajas, “Potenciometria: usos y aplicaciones”, CienciAcierta, no. 38, 2014. Disponible en: http://www.cienciacierta.uadec. mx/2014/06/05/potenciometria-usos-y-aplicaciones/
J. Estrada, J. Hernández, A. García, J. Peralta, & F. Cerino, “Electroanalytical determination of heavy metals in aqueous solutions by using a carbon paste electrode modified with spent coffee grounds”, Journal of Electroanalytical Chemistry, vol. 857, 2020. Doi: https://doi.org/10.1016/j. jelechem.2019.113663.
Y. Koike, K. Hagiwara, & T. Nakamura, “Enhancement of the atomic absorbance of Cr, Zn, Cd, and Pb in metal furnace atomic absorption spectrometry using absorption tubes”, Analytical Chemistry Research, vol. 11, pp. 9-12, 2017. Doi: https://doi.org/10.1016/j.ancr.2016.11.004
T.-J. Jiang, Z. Gou, J.-H. Liu, & X.-J. Huang, “Electroadsorption-Assisted direct determination of trace arsenic without interference using transmission X-ray fluorescence spectroscopy”, Analytical Chemistry, vol. 87, no. 16, pp. 8503–8509, 2015. Doi: https://doi.org/10.1021/acs.analchem.5b01957
E. Pérez y C. Barrantes, “Evaluación de tres métodos para la recuperación de metales pesados en fertilizantes”, Cuadernos de Investigación UNED, vol. 9, no. 2, pp. 257-265, 2017. Doi: https://doi.org/10.22458/urj.v9i2.1666
D. Apaza, B. Mestas, F. Romero y R. Navarro, “Toxicidad del cobre sobre la morfología de estomas de Gochnatia arequipensis Sandwith (Asteraceae) de dos localidades de Arequipa, Perú”, Idesia (Arica), vol. 37. no. 3, pp. 81-87, 2019. Disponible en: https://www.scielo.cl/pdf/idesia/v37n3/0718-3429-idesia-37-03-81.pdf
D. Caviedes, R. Muñoz, A. Perdomo, D. Rodríguez
y I. Sandoval, “Tratamientos para la remoción de metales pesados comúnmente presentes en aguas residuales industriales. Una revisión”, Revista de Ingeniería y Región, vol. 13, no. 1, pp. 73-90, 2015. Doi: https://doi.org/10.25054/22161325.710
S. E. Pabón, R. Benítez, R. Sarria-Villa y J. A. Gallo, “Contaminación del agua por metales pesados, métodos de análisis y tecnologías de remoción. Una revisión”, Entre Ciencia e Ingeniería, vol. 14, no. 27, pp. 9-18, enero-junio 2020. Disponible en: http://www.scielo.org.co/pdf/ecei/v14n27/1909- 8367-ecei-14-27-9.pdf
Y. Reyes, I. Vergara, O. Torres, M. Díaz-Lagos y E. González, “Contaminación por metales pesados: implicaciones en salud, ambiente y seguridad alimentaria”, Revista Ingeniería Investigación y Desarrollo, vol. 16, no. 2, pp. 66-77, julio-diciembre 2016. Doi: https://doi.org/10.19053/1900771X. v16.n2.2016.5447