Treatment of wastewater generated in the graphic communication industry using “Offset” printing. Study case

Main Article Content

Julian Felipe Gomez Murcia
https://orcid.org/0000-0001-8503-5728
Carlos Alberto Quiroga Barrios
https://orcid.org/0000-0001-9377-2074
Rafael Nikolay Agudelo Valencia
https://orcid.org/0000-0002-6646-7725

Abstract

This work evaluates the treatment of effluents generated in the lithographic industry with the “offset” method, applying the coagulation, flocculation, flotation, and ozonation processes. The following parameters are measured in the water in each treatment process: pH, total dissolved solids (TDS), electroconductivity (EC), total organic carbon (TOC), chemical oxygen demand (COD), and turbidity. For each process, the percentage of removal shows the effectiveness of the process, and a cost analysis is performed for each m3 of water to be treated. The coagulating agent that reacted was aluminum polychloride (PAC), which removed 56.35% of COD, 52.14% of TOC, and 92.29% of turbidity. The clarified water obtained after the coagulation, flocculation, and flotation process and subjected to oxidation with ozone obtained removals of 32.91% COD, 94.54% turbidity, and 27.38% TOC. A spectrophotometric sweep was carried out to qualitatively confirm the removal of contaminants by changes in the absorbances of the samples. To achieve a greater decrease in COD and TOC, it is necessary to increase the ozonation time, and the pH of the water during the process and intensify it with UV radiation of 254 nm to increase the production of ozone and OH* radicals.

References

W. Villalobos Gonzáles, J. P. Sibaja Brenes, J. C. Mora Barrantes, y B. Álvarez Garay, “Evaluación del impacto ambiental en una industria gráfica, que utiliza impresión litográfica tipo ‘offset’”, Uniciencia, vol. 35, núm. 1, pp. 367–383, jun. 2021, Doi: 10.15359/ru.35-1.23

P. Vitale, P. B. Ramos, V. Colasurdo, M. B. Fernandez, y G. N. Eyler, “Treatment of real wastewater from the graphic industry using advanced oxidation technologies: Degradation models and feasibility analysis”, J. Clean. Prod., vol. 206, pp. 1041–1050, ene. 2019, Doi: 10.1016/J.JCLEPRO.2018.09.105

C. Zampeta, M. Mastrantonaki, N. Katsaouni, Z. Frontistis, P. G. Koutsoukos, y D. V. Vayenas, “Treatment of printing ink wastewater using a continuous flow electrocoagulation reactor”, J. Environ. Manage., vol. 314, 2022, Doi: 10.1016/j. jenvman.2022.115033

MINISTERIO DE AMBIENTE Y DESARROLLO SOSTENIBLE, Decreto 4741 de 2005. 2005, pp. 1–14.

C. Monteiro, C. Ventura, y F. Martins, “A new approach for the extraction of pollutants from wastewaters handled by the graphic industry”, J. Environ. Manage., vol. 122, pp. 99–104, 2013, Doi: 10.1016/j.jenvman.2013.01.039

J. C. Torresano Pazmi o, “Dise o de una Planta para el Tratamiento de los Efluentes Líquidos de la Industria Gráfica”, Escuela Politécnica Nacional, Quito, 2017. https://bibdigital.epn.edu.ec/handle/15000/16985

V. Landiva, E. Marín, “Aplicación de técnicas avanzadas de oxidación (TAO’s) combinadas con biofiltros para el tratamiento de aguas residuales de la industria gráfica”, 2014. https://www.dspace.espol.edu.ec/handle/123456789/38919

T. Medina, “Evaluación de los coagulantes sulfato de aluminio tipo a y policloruro de aluminio para reducir la turbiedad del agua de procesos para una planta piloto de flotación”, 2021. http://hdl.handle.net/20.500.12773/12922

F. Martínez, “Tratamiento de aguas residuales industriales mediante electrocoagulación y coagulación convencional”, 2007. https://dialnet.unirioja.es/servlet/tesis?codigo=77603

T. Ho, C. Wu, T. Han, W. Syu, “Mineralization of sulfonamides from wastewater using ozone-based systems”, Water Sci Technol, Vol: 84, Issue 6: 1379–1388, 2021. Doi: 10.2166/wst.2021.325

C. Calvo, K. Valderrama, R. Agudelo, K. Perez, C. Campo, “Reducción de la concentración de DQO y COT en aguas residuales de la industria farmacéutica empleando ozono catalizado por Fe2+. Estudio de caso a escala real”. 2021. Doi: 10.21789/22561498.1707

N. Ramírez-Ramírez, M. C. Espinosa-Lloréns, L. A. Fernández-García, E. V liz-Lorenzo, and Y. Ramos- Rodríguez, “Treatment with Ozone of Wastewater Containing Tannins from Vegetal Tannery,” Water Technol. 2016. http://www.scielo.org.mx/scielo.phpscript=sci_arttext&pid=S2007-24222016000300053

S. Zhang, H. Ren, K. Fu, W. Cheng, D. Wu, C. Luo, S. Jiang, J. Li, M. Zhang. “Preparation of Mn/Mg/Ce Ternary ozone catalyst and its mechanism for degradation of printing and dyening wastewater”. 2022. https://www.researchgate.net/publication/ 357836622_Preparation_of_MnMgCe_Ternary_Ozone_Catalyst_and_Its_Mechanism_for_the_Degradation_of_Printing_and_Dyeing_Wastewater

K. Sivagami, K. P. Sakthivel, and I. M. Nambi. Advanced oxidation processes for the treatment of tannery wastewater. 2017. Doi: 10.1016/j.jece.2017.06.004

S. CAao, L. Chen, M. Zhao, A. Liu, M. Wang, Y. Sol, “Advanced Treatment of Phosphorus Pesticide Wastewater Using an Integrated Process of Coagulation and Ozone Catalytic Oxidation”, 2022. Disponible en: https://www.mdpi.com/2073-4344/12/1/103/htm

P. Setareh, M. Pirsaheb, S. Khezri, H. Hossaini, “Improving natural organic matter and turbidity removal from surface water by pre-coagulation combined with ozone/ultrasound”. 2021. Disponible en: https://iwaponline.com/ws/article/21/4/1410/78198/Improving-natural-organic-matter-and-turbidity

Rice EW, Baird RB, Eaton AD. Standard Methods for the Examination of Water and Wastewater. 23 ed. American Public Health Association, American Water Works Association, Water Environment Federation; 2017.

J. P. Cruz Martínez and P. Guerrero Fernández, “Limpieza manual de máquinas de impresión offset: exposición a disolventes orgánicos,” Universidad de Jaén, 2022. https://hdl.handle.net/10953.1/17738

N. D. Arteaga Sandoval. Limpieza del proceso de coagulación del sistema fisicoquímico de lamelas de una PTARI. Un estudio de caso en Sesquil. 2022. https://repository.unad.edu.co/handle/10596/48123

L. Perez, A. Yugcha. Optimización del proceso de coagulación en el tratamiento de agua a partir de la adición de basificantes en la planta de tratamiento de agua potable Casigana de la EPEMAPA- A. 2018. http://repositorio.uta.edu.ec/handle/123456789/28451

D. Fuquene, A. Yate. Ensayo de jarras para el control del proceso de coagulación en el tratamiento de aguas residuales industriales. 2018. Doi: 10.22490/ECAPMA.2771

M. Mahdi, T. Mohammed, J. Majar, “Advanced Oxidation Processes (AOPs) for treatment of antibiotics in wastewater: A review”, IOP Conference Series: Earth and Environmental Science, vol: 779, 2021. https://iopscience.iop.org/article/10.1088/17551315/779/1/012109/meta

S. Ghafari, H. A. Aziz, M. H. Isa, y A. A. Zinatizadeh, “Application of response surface methodology (RSM) to optimize coagulation flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum”, J. Hazard. Mater., vol. 163, n m. 2–3, pp. 650–656, 2009, Doi: 10.1016/j.jhazmat.2008.07.090

H. Shaheed, R. Mohamed, M. Al-Sahari, N. S. Mohd-Zind, A. Al-Gheethi, y T. Alomari, “Coagulation and flocculation of printing ink effluent using polyaluminium chloride (Pac): Optimization and phytotoxicity study”, Desalin. Water Treat., vol. 208, n m. April, pp. 303–311, 2020, Doi: 10.5004/dwt.2020.26408

X. Ma y H. Xia, “Optimization of coagulation process for treatment of water-based printing ink wastewater”, 2010 4th Int. Conf. Bioinforma. Biomed. Eng. iCBBE 2010, n m. 20061080, 2010, Doi: 10.1109/ICBBE.2010.5518191

L. T. Phan, H. Schaar, E. Saracevic, J. Krampe, y N. Kreuzinger, “Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent”, Sci. Total Environ., vol. 812, p. 152466, mar. 2022, Doi: 10.1016/J.SCITOTENV. 2021.152466

K. P. Papadopoulos et al., “Treatment of printing ink wastewater using electrocoagulation”, J. Environ.

Manage., vol. 237, núm. February, pp. 442–448, 2019, Doi: 10.1016/j.jenvman.2019.02.080

S. M. Safwat, “Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes”, J. Water Process Eng., vol. 34, núm. September 2019, p. 101137, 2020, Doi: 10.1016/j.jwpe.2020.101137

X. J. Ma y H. L. Xia, “Treatment of water-based printing ink wastewater by Fenton process

combined with coagulation”, J. Hazard. Mater., vol. 162, núm. 1, pp. 386–390, 2009, Doi: 10.1016/j.jhazmat.2008.05.068

A. M. Senn, Y. M. Russo, y M. I. Litter, “Treatment of wastewater from an alkaline cleaning solution by combined coagulation and photo-Fenton processes”, Sep. Purif. Technol., vol. 132, pp. 552–560, 2014, Doi: 10.1016/j.seppur.2014.06.006

Most read articles by the same author(s)