Mathematical modeling to correlate the dynamic viscosity of refrigerants using Eyring’s absolute reaction theory
Main Article Content
Abstract
In this work, the capability of a model based on the Eyring's absolute reaction theory is used to describe the saturated liquid viscosity of refrigerants and their mixtures. To estimate the thermodynamic properties associated with the viscosity model, a modified Peng-Robinson equation of state is used. The model has three adjustable parameters that are determined using pseudo-experimental data from the NIST-REFPROP 8 database. In total, 660 pseudo-experimental data in a temperature range between 121.00 K to 479.98 K and a pressure range between 2.18 kPa to 5782.6 kPa are used in the fitting process. The average absolute deviation of viscosity is around 0.52 %. Subsequently, the model is compared with others developed in the literature and this provides the least deviation. Finally, the model is extended to mixtures using a simple mixing rule and the average deviation is around 2.01%. The overall results show that the model represents an appropriate alternative for modeling the liquid saturated viscosity of refrigerants.
References
H. Zhang, S. Shao, H. Zou, C. Tian, “Performance analysis on hybrid system of thermosyphon free cooling and vapor compression refrigeration for data centers in different climate zones of China”, Energy Procedia, vol. 61, pp. 428-431, jun. 2015.
Y. Castro-García, N. Velázquez-Limón, R. Villa-Angulo, D. Sauceda-Carvajal, “Análisis termodinámico de un sistema de absorción tipo GAX enfriado por aire, para acondicionamiento térmico de espacios en climas cálidos extremos”, Inf.Tecnol., vol. 25, n. 3, pp. 167-176, jun. 2014.
K. J. Park, T. Seo, D. Jung, “Performance of alternative refrigerants for residential airconditioning applications”, Appl. Energy, vol. 84,
n. 10, pp. 985-991, oct. 2007.
A. Kasaeian, S. M. Hosseini, M. Sheikhpour, O. Mahian, W. M. Yan, S. Wongwises, “Applications of eco-friendly refrigerants and nanorefrigerants: A review”, Renew. Sustain. Energy Rev., vol. 96, pp. 91-99, nov. 2018.
C. Henao. Simulación y evaluación de procesos químicos. Medellín, Colombia: Universidad Pontificia Bolivariana, 2006.
R. Turton, R. Bailie, W.Whiting, J. Shaeiwitz. Analysis, synthesis, and design of chemical processes. Michigan: Pearson Education, 2008.
L. F. Cardona, “Calculation of the viscosity of hydrocarbons based on the cubic equation of state of Jarrahian-Heidaryan”, Rev. Mexic. Ing. Quím., vol. 15, n. 3, pp. 1019-1025, sep. 2016.
L. F. Cardona, L. A. Forero, J. A. Velásquez, “Modelamiento de la Viscosidad con Base en una Ecuación Cúbica μTP del Tipo Peng-Robinson”, Inf. Tecnol., vol. 30, n. 4, pp. 259-272, ago. 2019.
M. Bonyadi, M. Rostami, “A new viscosity model based on Soave-Redlich-Kwong equation of state”, Fluid Ph. Equilibria, vol. 451, n. 15, pp. 40-47, nov. 2017.
B. E. Poling, J. M. Prausnitz, J. P. O’Connell. Properties of gases and liquids (5. ed.). Nueva York: McGraw-Hill, 2001.
T. B. Fan, L. S. Wang, “A viscosity model based on Peng-Robinson equation of state for light hydrocarbon liquids and gases”, Fluid Ph. Equilibria, vol. 247, pp. 59-69, sept. 2006.
J. O. Valderrama, L. F. Cardona, R. E. Rojas, “Correlation and prediction of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part I: pure ionic liquids”, Fluid Ph. Equilibria, vol. 497, pp. 164-177, oct. 2019.
J. O. Valderrama, L. F. Cardona, R. E. Rojas, “Correlation of ionic liquid viscosity using Valderrama-Patel-Teja cubic equation of state and the geometric similitude concept. Part II: binary mixtures of ionic liquids”, Fluid Ph. Equilibria, vol. 497, pp. 178-194, oct. 2019.
R. Mac as-Salinas, F. Garc a-Sánchez, O. Hernandez-Garduza, “Viscosity model for pure liquids based on Eyring theory and cubic EOS”, AIChE J., vol. 49, n. 3, pp. 799-804, mar. 2003.
G. Cruz-Reyes, G. Luna-B rcenas, J. F. Javier Alvarado, I. C. Sánchez, R. Mac as-Salinas, “Simultaneous correlation of saturated viscosities of pure gases and liquids using the significant structure theory”, Ind. Eng. Chem. Res., vol. 44, n. 6, pp. 1960-1966, feb. 2005.
S. E. Quiñones-Cisneros, C. K. Z berg-Mikkelsen, E. H. Stenby, “Accurate density and viscosity modeling of nonpolar fluids based on the “f-theory” and a noncubic equation of state”, Int. J. Thermophys., vol. 23, n. 1, pp. 41-55, ene. 2002.
S. E. Qui ones-Cisneros, U. K. Deiters, “Generalization of the friction theory for viscosity modeling”, J. Phys. Chem. B, vol. 10, n. 25, pp. 12820-12834, jun. 2006.
F. Llovell, R. M. Marcos, L. F. Vega, “Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data”, J. Phys. Chem. B, vol.117, n. 27, pp. 8159-8171, jun. 2013.
L. T. Novak, “Fluid viscosity-residual entropy correlation”, Int. J. Chem. Reactor Eng., vol. 9, n. 1, pp. 1-27, nov. 2011.
I. V. Derevich, “Thermodynamic model of viscosity of hydrocarbons and their mixtures”, Int. J. Heat Mass Transf., vol. 53, pp. 3823-3830, sept. 2010.
X. Liu, C. Zhu, M. He, Y. Zhang, “Correlation for viscosities of pure liquids at high pressures”, J. Mol. Liq., vol. 231, pp. 404-410, abr. 2017.
S. Glasstone, J. Laidler, H. Eyring. The theory of rate process. Nueva York: McGrawHill, 1941.
L. Qun-Fang, H. Yu-Chun, L. Rui-Sen, “Correlation of viscosities of pure liquids in a wide temperature range”, Fluid Ph. Equilibria, vol. 140, pp. 221-231, December 1997.
L. F. Izquierdo, “Modelado de la viscosidad de compuestos puros en amplios intervalos de temperatura y presión”, tesis de maestría, Inst. Polit c. Nac., México, 2013.
S. Khosharay, M. Pierantozzi, G. Di Nicola, “Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel–Teja viscosity equation of state”, Int. J. Refrig., vol. 85, pp. 255-267, en. 2018.
X. Yang, X. Xiao, E. F. May, I. H. Bell, “Entropy scaling of viscosity—iii: application to refrigerants and their mixtures”, J. Chem. Eng. Data, vol. 66, n. 3, pp. 1385-1398, feb. 2021.
E. Lemmon, M. Huber, and M. McLinden, REFPROP Standard reference database 23, U.S. Nat. Inst. of Standards and Technol., 2007, ver. 8.0.
L. A. Forero, J. A. Velásquez, “Representación simultánea del equilibrio líquido-vapor, el volumen molar y la entalpía de exceso de mezclas complejas mediante una ecuación de estado tipo Peng-Robinson”, Inf. Tecnol., vol. 30, n. 6, pp. 21-34, dic. 2019.
L. A. Forero, J. A. Vel squez, “A generalized cubic equation of state for non-polar and polar substances”, Fluid Ph. Equilibria, vol. 418, pp. 74-87, jun. 2016.
J. C. Bloxham, M. E. Redd, N. F. Giles, IV, T. A. Knotts, W. V. Wilding, “Proper Use of the DIPPR 801 Database for Creation of Models, Methods, and Processes”, J. Chem. Eng. Data, vol. 66, n. 1, pp. 3-10, dic. 2020.
A. Laesecke, R. F. Hafer, D. J. Morris, “Saturatedliquid viscosity of ten binary and ternary alternative refrigerant mixtures. Part I: Measurements”, J. Chem. Eng. Data, vol. 46, n. 2, pp. 433-445, feb. 2001.
D. Ripple, O. Matar, “Viscosity of the saturated liquid phase of six halogenated compounds and three mixtures”, J. Chem. Eng. Data, vol. 38, n. 4, pp. 560-564, oct. 1993.
M. L. Hubet, J. F. Ely, “Prediction of viscosity of refrigerants and refrigerant mixtures”, Fluid Ph. Equilibria, vol. 80, pp. 239-248, nov. 1992.
X. Wang, J. Wu, Z. Liu, “Viscosity modeling of several HFC refrigerants using the friction theory”, Fluid Ph. Equilibria, vol. 262, pp. 251-263, dic. 2007.
L. H. Zhi, P. Hu, L. X. Chen, G. Zhao, “Viscosity prediction for six pure refrigerants using different artificial neural networks”, Int. J. Refr., vol. 88, pp. 432-440, abr. 2018.