Sustainable gold mining: implications of the use of waste as an aggregate for concrete

Main Article Content

Efrain Casadiego Quintero
Wilmar Gómez Ríos
https://orcid.org/0000-0002-2546-8975
Edgar R. Monroy
Jeniffer L. Sánchez Londoño
https://orcid.org/0000-0002-2556-2953

Abstract

It is necessary to extract a large amount of rock to obtain a minimum amount of gold, because the gold is scattered in part by the thousands in the deposit. The extraction process significantly generates solid waste product due to the crushing of the material, which generates waste from block size to sandy and fine granulometry. Most of the waste ends up as deposits on the surface or on slopes that generate the danger of landslides or damage to the soil, another large part of the soil material ends up being dumped into rivers and streams, which increases the rate of sedimentation and the deposition of heavy metals. The areas that are dedicated to the exploitation of gold in Colombia are located on the Andes Mountains, near water sources, which generates that a significant amount of water sources are affected, in addition, the mines are in some cases close to páramos such as the Santurban páramo, an important source of water in northern Colombia. The mines generate between 5 and 8 tons of waste per day, which makes the location of the material unmanageable. By means of petrography and X-ray diffraction, an important content of silica from quartz, plagioclase and micas was found.

References

K. Jagodzińska, I. Nuran-Zaini, R. Svanberg, W. Yang y Göran P. Jönsson, “Pyrolysis of excavated waste from landfill mining: Characterisation of the process products”, J Clean Prod, vol. 279, p. 123541, ene. 2021, doi: 10.1016/j.jclepro.2020.123541

F. M. Kusin et al., “Geo-ecological evaluation of mineral, major and trace elemental composition in waste rocks, soils and sediments of a gold mining area and potential associated risks CATENA, vol. 183, p. 104229, dic. 2019, doi: 10.1016/j.catena.2019.104229

P. S. Bragina y M. I. Gerasimova, “Pedogenic processes on mining dumps (a case study of southern Kemerovo oblast). Geogr. Nat. Resour., vol. 35, n.o 1, pp. 35-40 ene. 2014, doi: 10.1134/S1875372814010053.

V. K. Mishra, A. R. Upadhyaya, S. K. Pandey y B. D. Tripathi, “Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management through naturally occurring aquatic macrophytes”. Bioresour. Technol., vol. 99, n.o 5, pp. 930-936, mar. 2008, doi: 10.1016/j.biortech.2007.03.010

V. Y. Khoroshavin y T. I. Moiseenko, “Petroleum hydrocarbon runoff in rivers flowing from oil-andgas-producing regions in Northwestern Siberia”, Water Res., vol. 41, n.o 5. pp. 532-542, sep. 2014, doi: 10.1134/S0097807814050030.

I. I. Beloglazov, V. Y. Bazhin, y O. V. Zyryanova, “Upgrading of the process of technological pulp separation in modern pressure filters”, Non-ferr. Met., vol. 1, pp. 38-40. may. 2015, doi: 10.17580/nfm.2016.01.07.

M. A. Adabanija y M. A. Oladunjoye, “Geoenvironmental assessment of abandoned mines and quarries in South-western Nigeria”, J. Geochem. Explor., vol. 145. pp. 148-168, oct. 2014, doi:10.1016/j.gexplo.2014.06.003.

D. Kossoff, W. E. Dubbin, M. Alfredsson, S. J. Edwards, M. G. Macklin, y K. A. Hudson-Edwards, “Mine tailings dams: characteristics, failure, environmental impacts, and remediation”. Appl.Geochem., vol. 51. pp. 229-245, dic. 2014, doi:10.1016/j.apgeochem.2014.09.010.

R. W. Le Maitre, A. Streckeisen, B. Zanettin, M. J. Le Bas, B. Bonin, y P. Bateman, Eds., Igneous rocks: A classification and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 2.a ed. Cambridge: Cambridge University Press, 2002. doi: 10.1017/CBO9780511535581.

E. Casadiego-Quintero, A. G. Gutiérrez-Bayona, M. Á, Herrera-López y M. L. Páez-Rojas, “Manejo estratégico de la producción de residuos estériles de minería sustentable utilizando prácticas mineras eco-eficientes en Colombia”. Rev. Inv. Agr. Ambient., vol. 8, n.o 2, pp. 107-118, jul.-dic. 2017, doi: 10.22490/21456453.2035

M. E. Tucker, . Sedimentary Rocks in the Field: A Practical Guide, John Wiley & Sons, 2011.

S. Mindess, 6-Resistance of Concrete to Destructive Agencies, en Lea’s Chemistry of Cement and Concrete. P. C. Hewlett y M. Liska, Eds. Butterworth-Heinemann, 2019, pp. 251-283 doi:10.1016/B978-0-08-100773-0.00006-X.

T. Schmidt, A. Leemann, E. Gallucci, y K. Scrivener “Physical and microstructural aspects of iron sulfide degradation in concrete”, Cement and Concrete Research, vol. 41, n.o 3, pp. 263-269, mar. 2011, doi: 10.1016/j.cemconres.2010.11.011.

C. A. García Ramírez y E. Uribe Portilla, “Caracterización geológica y mineralógica del yacimiento la tosca (Vetas, Santander, Colombia): implicaciones para el procesamiento mineral de las menas auroargentíferas”. Bol. Geol., vol. 28, n.o 2, pp. 63-76, jul.-dic. 2006.

E. Casadiego-Quintero y M. Flórez, “Desarrollo rural, educación y posconflicto por medio del aprendizaje basado en proyectos”, en Reflexiones Pedagógicas y didácticas a partir de la enseñanza de la ingeniería, C. E. Obando Gamboa, Monroy Vargas, E. Casadiego Quintero, H. Bustos Castañeda, J. Salamanca López, M. Flórez Gutiérrez y S. Charry Ocampo, Eds., pp. 64-79. Bogota, Colombia: Fundación Universitaria Agraria de Colombia.

N. Har, A. Lăzărean, M. Iliescu, N. Ciont y I. F. Abrudan, “Degradation processes of iron-sulfides and calcite containing aggregates from asphaltic mixtures”, Constr. Build. Mater., vol. 212. pp. 745–754, jul. 2019, doi: 10.1016/j.conbuildmat.2019.04.018

W. S. Mackenzie, C. Guilford y B. W. Yardley, Atlas de rocas metamórficas y sus texturas. Madrid, España: Masson. pp. 59-81.

C. A. Zuluaga, S. Amaya, C. Urueña y M. Bernet, “Migmatization and low-pressure overprinting metamorphism as record of two pre Cretaceous tectonic episodes in the Santander Massif of the Andean basement in northern Colombia (NW South America)”, Lithos, vols. 274-275, mar. 2017, pp. 123-146. doi: 10.1016/j.lithos.2016.12.036

C. G. Ramos et al.Evaluation of the potential of volcanic rock waste from southern brazil as a natural soil fertilizer. J. Clean. Prod. vol. 142. pp. 2700-2706, ene. 2017, doi: 10.1016/j.jclepro.2016.11.006

J. Li, Z. Chen, B. Shen, Z. Xu, y Y. Zhang, “The extraction of valuable metals and phase transformation and formation mechanism in roasting-water leaching process of laterite with ammonium sulfate”, J. Clean Prod, vol. 140, pp. 1148-1155, ene. 2017, doi: 10.1016/j. jclepro.2016.10.050

A. González Ruiz, E. A. Villa Plazas, C. A. Ríos Reyes, Assessment of Amphibolite and Pegmatite Aggregates for the Manufacture of Concrete. Rev. Colomb. Mater, n.o 14, pp. 17-39.