Hydrological design of a VAC system for the El Caimo farm located in the municipality of Villa de Leyva, Boyacá
Main Article Content
Abstract
His article proposes to improve the productivity of the agro-ecosystem of the El Caimo farm located in the municipality of Villa de Leyva, Boyacá, by rehabilitating its agricultural production system; implementing an integrated agricultural system of cultivation that is part of the Basic Manual of Integrated Agro-Aquaculture of the United Nations Food and Agriculture Organization (FAO), being the VAC system of North Vietnam, which integrates the elements that are part of its structure looking for its operation and synergy taking into account the combination of the elements and their distribution in space, added to changes in the current coverage (land use) of the El Caimo farm. This is based on the elaboration of a hydrological design, with the aim of interpreting and quantifying through mathematical models the natural processes immersed in the hydrological dynamics that intervene in the productive development of the El Caimo estate, and in parallel the elaboration of a digital elevation model (DEM) through Geographical Information Systems (GIS) for the consultation of data and hydrometeorological information and the representation of georeferenced data for its analysis through a software to find behaviour patterns of different variables, for the delimitation of the hydrographic basin near the farm, with the purpose of identifying strategic points for the natural capture of precipitation water and its discharge by runoff directed to the natural supply of the components of the VAC system, as these are interactions between the climate and land systems. This is applicable to the agricultural production system of the El Caimo farm, which is developed in the management of an agro-ecosystem that requires the availability of resources for its operation, including water availability and its use, since it is a complex socioeconomic system, limited and determined by the social and political system in which it is located; by the value that the economy assigns to the farm’s resources and products; by the lack of road infrastructure, labor, capital, technology, and information that allows or limits the integration of the components that the farm offers, and that together contribute to the development of the production process. This situation explains its low productivity, which is a consequence of the lack of implementation of good agricultural practices. In this way, a 4% decrease in the run-off potential of the El Caimo farm is obtained with a change in its current coverage, due to a greater plant cover in trees with the planting of endemic species of Andean Oak (Quercus humboldtii) supported by the planting of crops that are currently produced on the farm, such as fruit (blackberry, peach) and vegetables (potato), and in accordance with the maximum use of 1,475,823 L of infiltration water, also the calculation of the decrease in flow due to the new tree cover on the farm was determined by the transit of floods which indicated a reduction of 0.428 m3/h, which favours the availability of the VAC system on the El Caimo farm.
References
[2] W. Sandoval-Erazo, Diseño de obras hidrotécnicas. Sangolqui, Ediespe, 2018.
[3] Organización de las Naciones Unidas para la Alimentación y la Agricultura, Instituto Internacional para la Reconstrucción Rural,
Worldfish Center, Agro-acuicultura integrada. Manual básico. Roma, FAO/ICLARM/IIRR,2004.
[4] M. Halwart, M. Espinoza-Martínez y A. Schuckler, Los pequeños estanques, Roma, FAO, 2000.
[5] Atlas del Ideam - Boyacá, 2010. [En línea]. Disponible en: http://atlas.ideam.gov.co/basefiles/boyaca_texto.pdf. [Accedido:
22-julio-2020].
[6] L. W. Mays, Ingeniería de recursos hídricos, 3a edición. New York,Wiley, 2019.
[7] Organización de las Naciones Unidas para la Alimentación y la Agricultura, Fondo Internacional para el Desarrollo de la Agricultura, y Cooperación Suiza en América Central, Captación y almacenamiento de agua de lluvia. Opciones técnicas para la agricultura familiar
en América Latina y el Caribe. Santiago de Chile, FAO, 2013.
[8] G. A. Forero Buitrago, “La madera colombiana, oportunidad de regeneración del flujo de los ríos mediante una producción sostenible y competitiva”, Rev. Tecnol., vol. 15, no. 2, pp. 113-128, 2017. doi: 10.18270/rt.v15i2.2179.
[9] E. Gras, Cosecha de agua y tierra. México, Coas ediciones, 2009.
[10] G. Poveda and O. Mesa, “Efectos hidrológicos de la Deforestación,” ResearchGate, Dec. 1994. https://www.researchgate.net/publication/254258616_Efectos_hidrologicos_de_la_Deforestacion. [Accedido: 3-diciembre-2020].
[11] Instituto de Hidrología Meteorología y Estudios Ambientales, “Sistema de Monitoreo de Bosque y Carbono,” 2017. http://smbyc.
ideam.gov.co/MonitoreoBC-WEB/pub/reporteGeoproceso.jsp?id_reporte=7101 [Accedido: 3-diciembre-2020].
[12] E. Ruiz y M. Miren, OpenCourseWare, [En línea]. Disponible en: https://ocw.ehu.eus/pluginfile.php/4576/mod_resource/content/
1/Material_Docente/Tema_5.pdf. [Accedido: 22-julio-2020].
[13] G. Tortosa, “Uso del estiércol como fertilizante”. Compostando Ciencia Lab., 2014. [En línea]. Disponible en: http://www.compostandociencia.com/2014/08/uso-estiercol-como-fertilizante/. [Accedido: 22-julio-2020].
[14] A. Tacon, Nutricion y alimentación de peces y camarones cultivados. Manual de capacitación. Brasilia, FAO, 1989. [En línea]. Disponible en: http://www.fao.org/3/ab492s/AB492S00.htm#TOC