Estudio comparativo del comportamiento de algunas pectinas comerciales como inhibidores en la formación de hidratos de tetrahidrofurano

Contenido principal del artículo

Orlando Castiblanco Urrego
Francisco Yánez

Resumen

 


En esta investigación se evaluó el uso de pectinas comerciales como inhibidores en la formación de hidratos de tetrahidrofurano, en busca de aquellas que se comportaran de acuerdo con la premisa básica de un inhibidor cinético, se disminuyera la velocidad de la inducción ose retrasara la formación y crecimiento de los cristales de hidrato. Utilizando 20% v/v como la proporción más adecuada de tetrahidrofurano y variando el tipo y concentración de pectina, se realizó el enfriamiento paulatino de la solución formadora de hidratos. Se encontró que con una concentración de 0,1% de pectina de frutos cítricos esterificada y con 0,5% de pectina de frutos cítricos esterificada con sal de potasio se registraron los mayores tiempos para el periodo de inducción, y con la utilización de una concentración de 0,1% de pectina de frutos cítricos de bajo índice de metoxilo se registró el mayor tiempo para el periodo de crecimiento. Al final, todos los experimentos realizados terminaron con la aglomeración de los cristales de hidrato. Aquellas pectinas comerciales que mostraron resultados positivos como inhibidores en la formación de hidratos de tetrahidrofurano podrían también tener el potencial de inhibir la formación de hidratos de gas natural.

Citas

[1] Z. R. Chong, S. H. B. Yang, P. Babu, P. Linga, & X. S. Li, “Review of natural gas hydrates as an
energy resource: Prospects and challenges,” Applied energy, n°. 162, pp. 1633-1652, 2016.
[2] S. Y. Lee, & G. D. Holder, “Methane hydrates potential as a future energy source,” Fuel processing technology, vol. 71, n°. 1-3, pp. 181-186, 2001.
[3] F. Li, Q. Yuan, T. Li, Z. Li, C. Sun, & G. Chen, “A review: Enhanced recovery of natural
gas hydrate reservoirs,” Chinese Journal of Chemical Engineering, vol. 27, n°. 9, pp. 2062-2073, 2019.
[4] X. S. Li, C. G. Xu, Y. Zhang, X. K. Ruan, G. Li, & Y. Wang, “Investigation into gas production
from natural gas hydrate: A review,” Applied Energy, n°. 172, pp. 286-322, 2016.
[5] Y. Liang, Y. Tan, Y. Luo, Y. Zhang & B. Li, Progress and challenges on gas production from natural gas hydrate-bearing sediment,” Journal of Cleaner Production, vol. 261, 121061, 2020.
[6] D. Chillón, Estudio del Método de Detección de Hidratos de Tetrahidrofurano y Comparación
de la Eficiencia de Inhibidor de Química Verde Respecto al Inhibidor Convencional Metanol,
tesis de grado, Ingeniería Química, Universidad Central de Venezuela, Caracas, 2011.
[7] G. D. Holder, L. P. Mokka, & R. P. Warzinski, “Formation of gas hydrates from single-phase
aqueous solutions,” Chemical engineering science, vol. 56, n°. 24, pp. 6897-6903, 2001.
[8] S. Al-Adel, J. A. Dick, R. El-Ghafari, & P. Servio, “The effect of biological and polymeric
inhibitors on methane gas hydrate growth kinetics,” Fluid Phase Equilibria, vol. 267, n°.
1, pp. 92-98, 2008.
[9] C. B. Bavoh, B. Lal, H. Osei, K. M. Sabil, & H. Mukhtar, “A review on the role of amino acids
in gas hydrate inhibition, CO2 capture and sequestration, and natural gas storage,” Journal
of Natural Gas Science and Engineering, n°. 64, pp. 52-71, 2019.
[10] W. Ke, & D. Chen, “A short review on natural gas hydrate, kinetic hydrate inhibitors and
inhibitor synergists,” Chinese Journal of Chemical Engineering, vol. 27, n°. 9, pp. 2049-2061, 2019.
[11] D. Dugarte, Determinación del Método y las Condiciones de Operación Óptimas para la
Extracción de la Pectina Contenida en la Cáscara de Mango, así como su Aplicación para la
Inhibición de Hidratos de Tetrahidrofurano, tesis de grado, Ingeniería Química, Universidad
Central de Venezuela, Caracas., 2011.
[12] M. Asadi, K. Peyvandi, F. Varaminian, & Z. Mokarian, “Investigation of THF hydrate formation kinetics: Experimental measurements of volume changes,” Journal
of Molecular Liquids, vol. 290, 111200, 2019.
[13] E. D. Sloan Jr., C. A. Koh & C. Koh, Clathrate hydrates of natural gases. Boca Raton: CRC
press, 2007.
[14] S. Fang, X. Zhang, J. Zhang, C. Chang, P. Li, & J. Bai, “Evaluation on the natural gas hydrate formation process,” Chinese Journal of Chemical Engineering, vol. 28, n°. 3, pp. 881-888, 2020.
[15] U. Karaaslan, E. Uluneye, & M. Parlaktuna, “Effect of an anionic surfactant on different type
of hydrate structures,” Journal of Petroleum Science and Engineering, vol. 35, n°. 1-2, pp. 49-57, 2002.
[16] E. M. Freer, M. S. Selim, & E. D. Sloan Jr., “Methane hydrate film growth kinetics,” Fluid
Phase Equilibria, vol. 185, n°. 1-2, pp. 65-75, 2001.
[17] R. Larsen, C. A. Knight, & Knight, E. D. Knight, “Clathrate hydrate growth and inhibition,”
Fluid Phase Equilibria, n°. 150, pp. 353-360, 1998.
[18] G. J. Chen, C. Y. Sun, & T. M. Guo, “Modelling of the formation conditions of structure-H
hydrates,” Fluid phase equilibria, vol. 204 n°. 1, pp. 107-117, 2003.
[19] C. A. Koh, R. E. Westacott, W. Zhang, K. Hirachand, J. L. Creek, & A. K. Soper, “Mechanisms of gas hydrate formation and inhibition,” Fluid Phase Equilibria, n°. 194, pp. 143-151, 2002.
[20] K. A. Udachin, C. I. Ratcliffe & J. A. Ripmeester, “Single crystal diffraction studies of
structure I, II and H hydrates: structure, cage occupancy and composition,” Journal of Supramolecular Chemistry, vol. 2, n°. 4-5, pp. 405-408, 2002.
[21] S. Shahnazar & N. Hasan, “Gas hydrate formation condition: Review on experimental and
modeling approaches”, Fluid Phase Equilibria, n°. 379, pp. 72-85, 2014.
[22] D. Kashchiev, & A. Firoozabadi, “Induction time in crystallization of gas hydrates,” Journal
of crystal growth, vol. 250, n°. 3-4, pp. 499-515, 2003.
[23] M. Yang, J. Zhao, J. N. Zheng & Y. Song, “Hydrate reformation characteristics in natural
gas hydrate dissociation process: A review, Applied Energy, vol. 256, 113878, 2019.
[24] B. Chen, H. Dong, H. Sun, P. Wang, & L. Yang, “Effect of a weak electric field on THF hydrate
formation: Induction time and morphology,” Journal of Petroleum Science and Engineering,
vol. 194, 107486, 2020.
[25] V. Nardone, M. Müller, A. Bouza, Y. Sánchez & J. Montbrun, “Evaluación de modelos empíricos para la predicción de hidratos de gas natural,” Revista de la facultad de Ingeniería
(UCV, Caracas), vol. 24, n°. 3, pp. 21-31, 2009.
[26] J. Y. Lee, T. S. Yun, J. C. Santamarina, & C. Ruppel, “Observations related to tetrahydrofuran
and methane hydrates for laboratory studies of hydrate‐bearing sediments,” Geochemistry,
Geophysics, Geosystems, vol. 8, n°. 6, pp. 1-10, 2007.
[27] Q. Nasir, H. Suleman & Y. A. Elsheikh, “A review on the role and impact of various additives
as promoters/inhibitors for gas hydrate formation,” Journal of Natural Gas Science and Engineering, vol. 76, 103211, 2020.
[28] J. Devia, Proceso para producir pectinas cítricas. Medellín: Universidad Eafit, 2003.
[29] J. Piza, & M. Koss, “Estudio preliminar de la obtención y caracterización de pectinas a partir
de residuos de naranjas de la variedad criolla del cantón de Acosta,” Ingeniería y ciencia química, vol. 9, n°. 2, pp. 49-52, 1984.
[30] R. Wang, R. Li, L. Zhang, J. Sun, H. Sun & X. Shi, “Kinetic mechanism of hydrophilic amino acid inhibiting the formation of tetrahydrofuran (THF) hydrate,” Natural Gas Industry B.,
vol. 7, n°. 2, pp. 184-189, 2020.