Artículo de Artículos de Investigación Científica y Tecnológica

Una revisión de las contribuciones de la dinámica de sistemas en la transición de vehículos eléctricos

Artículo principal

Milton Mauricio Herrera
Alejandra Hernández
Camila Velandia
Enviado may 5, 2020      Publicado may 1, 2020

Resumen

La transición de tecnologías intensivas en el uso de combustibles fósiles a tecnologías limpias ha tomado relevancia en las últimas décadas. En este sentido, estrategias para la implementación de alternativas de transporte que mitiguen la emisión de dióxido de carbono han sido ampliamente estudiadas en la literatura. A pesar de las estrategias de transición desarrolladas, nuevos desafíos enfrentan la transición de tecnologías limpias (ejemplo, vehículos eléctricos y energías renovables) que requieren de una intervención sistémica. La dinámica de sistemas ha sido por excelencia una metodología apropiada para el análisis de transición de vehículos eléctricos. Este artículo realiza una revisión que contribuye con las oportunidades y desafíos planteados desde la literatura para enfrentar la transición tecnológica en el sector transporte, específicamente los vehículos eléctricos.

[1] M. Espinosa, Á. I. Cadena, y E. Behrentz, “Challenges in greenhouse gas mitigation in developing countries: A case study of the Colombian transport sector”, Energy Policy, vol. 124, pp. 111-122, 2019.
[2] L. M. Benvenutti, M. Uriona-Maldonado, y L. M. S. Campos, “The impact of CO2 mitigation policies on light vehicle fleet in Brazil”, Energy Policy, vol. 126, pp. 370-379, 2019.
[3] J. E. Martínez-Jaramillo, S. Arango-Aramburo, K. C. Álvarez-Uribe, y P. Jaramillo-Álvarez, “Assessing the impacts of transport policies through energy system simulation: The case of the Medellin Metropolitan Area, Colombia”, Energy Policy, vol. 101, pp. 101-108, 2017.
[4] N. Ito, K. Takeuchi, y S. Managi, “Willingness- to-pay for infrastructure investments for alternative fuel vehicles”, Transp. Res. Part D Transp. Environ., vol. 18, n.o 1, pp. 1-8, 2013.
[5] S. Y. Park, J. W. Kim, y D. H. Lee, “Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects”, Energy Policy, vol. 39, n.o 6, pp. 3307-3315, 2011.
[6] A. Muñoz-Villamizar, J. R. Montoya-Torres, y J. Faulin, “Impact of the use of electric vehicles in collaborative urban transport networks: A case study”, Transp. Res. Part D Transp. Environ., vol. 50, pp. 40-54, 2017.
[7] S. P. Shepherd, “A review of system dynamics models applied in transportation”, Transp. BTransport Dyn., vol. 2, no 2, pp. 83–105, 2014.
[8] J. D. Sterman, Business dynamics: Systems Thinking and Modeling for a Complex World. Boston: McGraw-Hill, 2000.
[9] M. M. Herrera, J. Rosero-García, y O. Casas, “Systemic analysis of the adoption of electric vehicle technologies in Colombia”, Int. Rev. Mech. Eng., vol. 11, n.o 4, 2017.
[10] D. Ospina, S. Zapata, M. Castañeda, I. Dyner, A. J. Aristizábal, y N. Escalante, “Model for evaluating CO2 emissions and the projection of the transport sector”, Int. J. Electr. Comput. Eng., vol. 8, n.o 3, pp. 1781-1787, 2018.
[11] J. Orjuela, M. M. Herrera, y W. Casilimas, “Impact analysis of transport capacity and food safety in Bogota”, en 2015 Workshop Engineering Application, Bogotá, 2015, pp. 7-13.
[12] J. D. Sterman, Business Dynamics: Systems thinking nd Modelling for a Complez World. Boston: McGraw-Hill, 2000.
[13] J. W. Forrester, Industrial dynamics. Cambridge, Massachusetts: M.I.T. Press, 1961.
[14] H. Rahmandad, N. Repenning, y J. Sterman, “Effects of feedback delays on learning”, Syst. Dyn. Rev., vol. 25, n.o 4, pp. 309-338, 2009.
[15] M. J. Eppstein, D. K. Grover, J. S. Marshall, y D. M. Rizzo, “An agent-based model to study market penetration of plug-in hybrid electric vehicles”, Energy Policy, vol. 39, n.o 6, pp. 3789-3802, 2011.
[16] Y. Geum, S. Lee, y Y. Park, “Combining technology roadmap and system dynamics simulation to support scenario-planning: A case of car-sharing service”, Comput. Ind. Eng., vol. 71, pp. 37-49, 2014.
[17] D. Wheat, “What Can System Dynamics Learn From the Public Policy Implementation Literature?”, Syst. Res. Behav. Sci., vol. 27, n.o 3, pp. 425-442, 2010.
[18] M. Jimenez, C. J. Franco, y I. Dyner, “Diffusion of renewable energy technologies: The need for policy in Colombia”, Energy, vol. 111, pp. 818-829, 2016.
[19] M. M. Herrera, I. Dyner, y F. Cosenz, “Assessing the effect of transmission constraints on wind power expansion in northeast Brazil”, Util. Policy, vol. 59, ag. 2019.
[20] M. M. Herrera, F. Cosenz, y I. Dyner, “How to support energy policy coordination? Findings from the Brazilian wind industry”, Electr. J., vol. 32, n.o 8, 2019.
[21] J. Struben y J. D. Sterman, “Transition challenges for alternative fuel vehicle and transportation systems”, Environ. Plan. B Plan. Des., vol. 35, n.o 6, pp. 1070-1097, 2008.
[22] E. Bivona y G. Montemaggiore, “Understanding short-and long-term implications of ‘myopic’ fllet maintenance policies: a system dynamics application to a city bus company”, Syst. Dyn. Rev., vol. 26, n.o 3, pp. 195-215, 2010.
[23] W. B. Fontoura, G. de L. D. Chaves, y G. M. Ribeiro, “The Brazilian urban mobility policy: The impact in São Paulo transport system using system dynamics”, Transp. Policy, vol. 73, pp. 51-61, 2019.
[24] S. Fallah-Fini, H. Rahmandad, K. Triatis, y J. de la Garza, “Optimizing highway maintanance operations: dynamic considerations”, Syst. Dyn. Rev., vol. 26, n.o 3, pp. 216-238, 2010.
[25] P. Pfaffenbichler, G. Emberger, y S. Shepherd, “A system dynamics approach to land use transport interation modelling: the strategic model MARS and its application”, Syst. Dyn. Rev., vol. 26, n.o 3, pp. 262-282, 2010.
[26] L. Cox et al., “Exploring synergies between transit investment and dense redevelopment: A scenario analysis in a rapidly urbanizing landscape”, Landsc. Urban Plan., vol. 167, pp. 429-440, 2017.
[27] H. Vafa-Arani, S. Jahani, H. Dashti, J. Heydari, y S. Moazen, “A system dynamics modeling for urban air pollution: A case study of Tehran, Iran”, Transp. Res. Part D Transp. Environ., vol. 31, pp. 21-36, 2014.
[28] Z. Wang, Y. Zhang, L. Lian, y C. Chu, “Evaluating transportation infrastructure investment on a regional level: a system dynamics simulation”, Simulation, vol. 94, n.o 10, pp. 943-954, 2018.
[29] H. Wang, K. Zhang, J. Chen, Z. Wang, G. Li, y Y. Yang, “System dynamics model of taxi management in metropolises: Economic and environmental implications for Beijing”, J. Environ. Manage., vol. 213, pp. 555-565, 2018.
[30] L. Wen y L. Bai, “System Dynamics Modeling and Policy Simulation for Urban Traffic: a Case Study in Beijing”, Environ. Model. Assess., vol. 22, n.o 4, pp. 363-378, 2017.
[31] P. Liu, C. Liu, J. Du, y D. Mu, “A system dynamics model for emissions projection of hinterland transportation”, J. Clean. Prod., vol. 218, pp. 591-600, 2019.
[32] T. Ercan, N. C. Onat, y O. Tatari, “Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach”, J. Clean. Prod., vol. 133, pp. 1260-1276, 2016.
[33] J. Sim, “The influence of new carbon emission abatement goals on the truck-freight transportation sector in South Korea”, J. Clean. Prod., vol. 164, no 2017, pp. 153-162, 2017.
[34] L. M. M. Benvenutti, A. B. Ribeiro, y M. Uriona, “Long term diffusion dynamics of alternative fuel vehicles in Brazil”, J. Clean. Prod., vol. 164, pp. 1571-1585, 2017.
[35] G. Noto, “Urban Transportation Governance and Wicked Problems: A system and performance oriented approach”, tesis Ph. D., Departamento
de Ciencia Política y Relaciones Internacionales (DEMS), Universidad de Palermo, Palermo, 2015.
[36] G. Egilmez y O. Tatari, “A dynamic modeling approach to highway sustainability: Strategies to reduce overall impact”, Transp. Res. Part A Policy Pract., vol. 46, n.o 7, pp. 1086-1096, 2012.
[37] N. C. Onat, M. Kucukvar, O. Tatari, y G. Egilmez, “Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: a case for electric vehicles”, Int. J. Life Cycle Assess., vol. 21, n.o 7, pp. 1009-1034, 2016.
[38] X. Zhang, Y. Liang, y W. Liu, “Pricing model for the charging of electric vehicles based on system dynamics in Beijing”, Energy, vol. 119, pp. 218-234, 2017.
[39] R. Hein, P. R. Kleindorfer, y S. Spinler, “Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems”, Technol. Forecast. Soc. Change, vol. 79, n.o 9, pp. 1654-1671, 2012.
[40] M. Braz da Silva y F. Moura, “Electric vehicle diffusion in the Portuguese automobile market”, Int. J. Sustain. Transp., vol. 10, no 2, pp. 49-64, 2016.
[41] M. M. Herrera, J. Rosero, y O. Casas, “Systemic Analysis of the Adoption of Electric Vehicle Technologies in Colombia”, Int. Rev. Mech. Eng., vol. 11, pp. 256-269, abr. 2017.
[42] K. Kieckhäfer, T. Volling, y T. S. Spengler, “A hybrid simulation approach for estimating the market share evolution of electric vehicles”, Transp. Sci., vol. 48, n.o 4, pp. 651-670, 2014.
[43] Y. Lee, C. Kim, y J. Shin, “A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach”, Appl. Energy, vol. 184, n.o 2016, pp. 438-449, 2016.
[44] X. Zhou, R. Zhao, L. Cheng, y X. Min, “Impact of policy incentives on electric vehicles development: a system dynamics-based evolutionary game theoretical analysis”, Clean Technol. Environ. Policy, vol. 21, n.o 5, pp. 1039-1053, 2019.
[45] K. Laurischkat y D. Jandt, “Techno-economic analysis of sustainable mobility and energy solutions consisting of electric vehicles, photovoltaic systems and battery storages”, J. Clean. Prod., vol. 179, pp. 642-661, 2018.
[46] J. A. Orjuela-Castro, M. M. Herrera-Ramírez, y W. Adarme-Jaimes, “Warehousing and transportation logistics of mango in Colombia: A system dynamics model”, Rev. Fac. Ing., vol. 26, n.o 44, pp. 71–84, 2017.
[47] M. Uriona y S. S. Grobbelaar, “Innovation system policy analysis through system dynamics modelling: A systematic review”, Sci. Public Policy, vol. 46, n.o 1, pp. 28-44, 2019.
[48] D. Fiorello, F. Fermi, y D. Bielanska, “The ASTRA model for strategic assessment of transport policies”, Syst. Dyn. Rev., vol. 26, n.o 3, pp. 283-290, 2010.
[49] J. Dong, Y. Xu, B. gang Hwang, R. Ren, y Z. Chen, “The impact of underground logistics system on urban sustainable development: A system dynamics approach”, Sustain., vol. 11, n.o 5, 2019.
[50] Y. Shi, T. Arthanari, X. Liu, y B. Yang, “Sustainable transportation management: Integrated modeling and support”, J. Clean. Prod., vol. 212, pp. 1381-1395, 2019.
[51] J.-H. Lewe, L. F. Hivin, y D. N. Mavris, “A multi-paradigm approach to system dynamics modeling of intercity transportation”, Transp. Res. Part E Logist. Transp. Rev., vol. 71, pp. 188-202, 2014.

Detalles de artículos

Cómo citar
Herrera, M., Hernández, A., & Velandia, C. (2020). Una revisión de las contribuciones de la dinámica de sistemas en la transición de vehículos eléctricos. INVENTUM, 14(27), 89-102. https://doi.org/10.26620/uniminuto.inventum.14.27.2019.89-102
Sección
Artículos de Investigación Científica y Tecnológica