Artículo de Artículos de Investigación Científica y Tecnológica

Análisis del ciclo de vida de un edificio residencial en Colombia

Artículo principal

Krystle Danitza González Velandia
http://orcid.org/0000-0002-6982-2569
Luisa Fernanda Pérez
http://orcid.org/0000-0002-8821-3902
Erika Galeano
http://orcid.org/0000-0003-0275-3033
Enviado abr 30, 2020      Publicado abr 30, 2020

Resumen

A nivel mundial se han adelantado diferentes estudios que revelan los impactos ambientales del sector de la construcción. Estos impactos se asocian
a los materiales, la maquinaria empleada, las técnicas que se aliquen, a las condiciones geográficas donde se ubique la construcción, y la demanda de
energía y recursos durante su uso. En el caso colombiano, son escasos los estudios de impactos ambientales en el sector de la construcción, y aún
más escasos en construcciones verticales, lo que motivó la presente investigación centrada en la evaluación de los impactos ambientales de un
edificio residencial de doce pisos en Bogotá, D. C., empleando un análisis de ciclo de vida. Este análisis se realiza desde la fase de producción de los
materiales de construcción, transporte, la construcción, el uso y hasta su disposición final, aplicando el método de evaluación de impacto CML- 2015.
Los resultados muestran que entre los principales impactos están la AD y el GWP, y que en la etapa de uso es donde se presentan el 97 % del total de
los impactos ambientales del edificio, por ser la etapa donde más se consume energía y agua, especialmente asociado a hábitos de consumo.

[1] G. Flores, “El 70 % de la vivienda de Bogotá está construida en altura,” Portafolio, 18 feb., 2017. [En línea]. Disponible en: http://www.portafolio.co/mis-finanzas/vivienda/el-70-de-la-vivienda-debogota- esta-construida-en-altura-503480. [Último acceso: 6 Junio 2017].

[2] I. Zabalza, A. Valero y A. Aranda, “Life cycle assessment of building materials: Compa- rative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential,” Building and En- vironment, vol. 46, n.° 5, pp. 1133-1140, 2011. DOI: https://doi.org/10.1016/j.buil- denv.2010.12.002.

[3] R. Lukman, A. Tiwary y A. Azapagic, “Towards greening a university campus: The case of the University of Maribor, Slovenia,” Resources, Conservation and Recycling, vol. 53, n.°11,pp.639-644,2009.DOI:https://doi.org/

[4] M. Asif, T. Muneer y R. Kelley, “Life cycle assessment: A case study of a dwelling home in Scotland,” Building and Environment, vol. 42, n.| 3, pp. 1391-1394, 2007. DOI: https://doi.org/10.1016/j.buildenv.2005.11.023.

[5] O. Yepes y C. Bedoya, “El bloque de suelo cemento (BSC) al bloque de suelo,” tesis de Maestría en Construcción, Modalidad Profun- dización, énfasis en Construcción Sostenible, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia, 2012. [En línea]. Disponible en:
http://www.bdigital unal. edu.co/8561/1/43635688.2012.pdf.[Último acceso: 2 Junio 2017].

[6] J. Hernandez, “El impacto ambiental por la actividad de explotación de canteras en la localidad de Usme y sus principales medidas de manejo,” tesis, Especialización en Planeación Ambiental y Manejo Integral de los Recursos Na- turales, Universidad Militar Nueva Granada, Bogotá, Colombia 2015. [En línea]. Disponible en: https://repository.unimilitar.edu.co/bitstream/handle/10654/6331/Art%EDculo%20EL; jsessionid=E0023147ED6C0A8A232A9547860A
DF53?sequence=1.

[7] S. Roh, S. Taeb, S. Joon y G. Fordc, “Evaluating the embodied environmental impacts of major building tasks and materials of apartment buildings in Korea,” Renewable and Sustainable Energy Reviews, vol. 73, pp. 135-144, 2017. DOI: https://doi.org/10.1016/j.rser.2017.01.081.

[8] H. Yan, Q. Shen, L. Fan, Y. Wamg y L. Zhang, “Greenhouse gas emissions in building construction: A case study of One Peking in Hong Kong,” Building and Environment, vol. 45, n.° 4, pp. 949-955, abr., 2010. DOI: 10.1016/j.buildenv.2009.09.014

[9] O. Ortiz, F. Castells y G. Sonnemann, “Sustainability in the construction industry: A review of recent developments based on LCA,” Construction and Building Materials, vol. 23, n.° 1, pp. 28-39, 2009. DOI: https://doi. org/10.1016/j.conbuildmat.2007.11.012

[10] H. J. Wu, Z. W. Yuan, L. Zhang y J. Bi, “Life cycle energy consumption and CO2 emission of an office building in China,” Building and Environment, vol. 17, n.° 2, pp. 36-48, 2012. [En línea]. Disponible en https://link.springer. com/article/10.1007/s11367-011-0342-2.

[11] O. Ortiz, F. Castells y G. Sonnemann, “Life cycle assessment of two dwellings: One in Spain, a developed country, and one in Colombia, a country under development,” Science of The Total Environment, vol. 408, n.° 12, pp. 2435-2443,2010. DOI: https://doi.org/10.1016/j.scitotenv.2010.02.021.

[12] A. V. Cuevas, “Estado del arte sobre el Análisis de Ciclo de Vida en la construccion de vivienda potencial de aplicación en Colombia,”trabajo de grado, Administración y Grestión Ambiental, Universidad Piloto de Colombia, Bogotá, 2012. Disponible en: http://polux.unipiloto.edu.co: 8080/00000438.pdf
[13] M. Glavind y C. Munich-Petersen, “’Green’ Concrete in Denmark,” Structural Concrete, n.° 1, pp. 19-25, 2000. [En línea]. Disponible en: https://www.dti.dk/green-concrete-in-den mark/2496.
[14] A. C. d. C. Filho, “Análisis del ciclo de vida de productos derivados del cemento - Aportaciones al análisis de los inventarios del ciclo de vida del cemento,” Universidad Politécnica de Cataluña, Barcelona, España, 2001. [En línea]. Disponible en: http://hdl.handle. net/10803/5903

[15] K. Onabolu y R. T, “A case study of the develo- pment of life cycle assessment as a management tool in a building industry organisation,” en International Symposium on Intergrated Life-Cycle Design of Materials and Structu- res, Helsinki, Finlandia, 2000.

[16] M. Vold y A. Ronning, “LCA of cement and concrete - Main report,” Finncement AB, Ce- menta AB and Norcem AS, Fredrikstad, No- ruega, nov., 1995 pp. 50-50, 1995. [En línea]. Disponible en: https://www.ostfoldforskning. no/media/1503/3295.pdf.

[17] M. Nisbet y M. Van Geem, “Environmental Life Cycle Inventory of Portland Cement and Concrete,” World Cement, 1997. [En línea]. Disponible en: https://www.nrmca.org/tas-kforce/Item_2_TalkingPoints/Sustainability/ Sustainability/SN2140.pdf.
[18] C. Muñoz y F. Quiroz, “Análisis de Ciclo de Vida en la determinación de energía conte- nida y la huella de carbono en el proceso de fabricación del hormigón premezclado. Caso estudio planta productora Región del Bio Bío, Chile,” Revista Hábitat Sustentable, vol. 4, n.° 2, pp. 16-25, 2014. [En línea]. Disponible en: http://revistas.ubiobio.cl/index.php/ RHS/article/view/447.
[19] L. P. Rosado, P. Vitale, C. Santos y H. Are- na, “Life cycle assessment of natural and mixed recycled aggregate production in Brazil,” Journal of Cleaner Production, vol. 151, pp. 634-642, 2017. DOI: https://doi.or- g/10.1016/j.jclepro.2017.03.068.
[20] Agencia Suiza para el Desarrollo y la Coope- ración y la Pontificia Universidad Católica del Perú, Estudio de análisis de ciclo de vida de ladrillos y bloques de concreto, Lima: Pontificia Universidad Católica del Perú, 2010.
[21] L. Zhang, “Production of bricks from waste materials –Areview,” Construction and Building Materials, vol. 47, pp. 643-655, 2013. DOI: https://doi.org/10.1016/j.conbuildmat. 2013.05.043.
[22] I. Sartori yA. Hestnes, “Energy use in the life cy- cle of conventional and low-energy buildings: a review article,” Energy and Buildings, vol. 39, n.° 3, pp. 249-257, 2007. DOI: https://doi. org/10.1016/j.enbuild.2006.07.001
[23] K. Adalberth, A. Almgren y E. Petersen, “Life cycle assessment of four multi-family buildings,” International Journal of Low Energy and Sustainable Buildings, vol. 2, pp. 1-21, 2001.
[24] B. Peuportier, “Life cycle assessment applied to the comparative evaluation of single family houses in the French context,” Energy and Buildings, vol. 33, n.° 5, pp. 443-450, 2001. DOI: https://doi.org/10.1016/S0378-7788(00)00101-8
[25] F. Asdrubalia, C. Baldassarria y V. Fthenakisb, “Life cycle analysis in the construction sector: Guiding the optimization of conventio- nal Italian buildings,” Energy and Buildings, vol. 64, pp. 73-89, 2013. DOI: https://doi. org/10.1016/j.enbuild.2013.04.018.
[26] P. Vitale, N. Arenab, F. Di Gregorioc y U. Arenaa, “Lifecycleassessmentoftheend-of-lifephaseof a residential building,” Waste Management, vol. 60, p. 311–321, 2017. DOI:10.1016/j.wasman.2016.10.002.
[27] G. A. Blengini, “ Life cycle of buildings, demolition and recycling potential: a case study in Turin, Italy. ” Build Environ,vol 44, pp. 319- 330, 2009. DOI: https://doi.org/10.1016/j. buildenv.2008.03.007
[28] F. Ardente, G. Beccali, M. Cellura, M. Fontana y S. Longo, “L’analisi del ciclo di vita applicata agli edifici residenziali: il caso studio di un edificio mono-familiare,” Rivista La Termotécnica, n.° 7, pp. 55-59, 2009.
[29] L. Huang, Y. Liu, G. Krigsvoll y F. Johansen, “Life cycle assessment and life cycle cost of university dormitories in the southeast China: Case study of the university town of Fuzhou,”Journal of Cleaner Production, vol. 173, pp. 151-159, 2018. DOI: https://doi.org/10.1016/j.jclepro.2017.06.021.
[30] M. Sandanayakea, Guomin, S. Setungea, W. Luob, Lia y Chun-Qing, “Estimation and comparison of environmental emissions and impacts at foun- dation and structure construction stages of a building – A case study,” Journal of Cleaner Production, vol. 151, pp. 319-329, 2017. DOI: https://doi.org/10.1016/j.jclepro.2017.03.041.

[31] C. Scheuer, G. A. Keoleian y P. Reppe, “Life cycle energy and environmental performance of a new university building: modeling challenges and design implications,” Energy and Buildings, vol. 35, n.° 10, pp. 1049-1064, 2003. DOI: https://doi.org/10.1016/S0378-788(03)00066-5

[32] ISO 14040, “Gestión Ambiental - Análisis de Ciclo de Vida - Principios y Marco de referencia,” Instituto Colombiano de Normas Técnicas y Certificación ICONTEC, 2007.

[33] EPM, “Empresa de servicios públicos de Me- dellín y Colombia,” [En línea]. Disponible en: http://www.epm.com.co/site/. [Último ac- ceso: 2 Marzo 2017].

[34] Ecoinvent, “Ecoinvent 3.3,” 2016.[En línea]. Disponible en: https://www.ecoinvent.org/

[35] M. Tait y W. Cheung, “A Comparative Cradle-to- Gate Life Cycle Assessment of Three Concrete Mix Designs,” The International Journal of LifeCycle Assessment, vol. 21, n.° 6, pp. 847- 860, 2016. [En línea]. Disponible en: https:// link.springer.com/article/10.1007/s11367- 016-1045-5.

[36] C. Knoeri, E. Sanyé-Mengual y H.-J. Althaus, “Comparative LCA of recycled and conventional concrete for structural applications,” The International Journal of Life Cycle Assess- ment, vol. 18, n.° 5, pp. 909-918, 2013. [En línea]. Disponible en https://link.springer.com/article/10.1007/s11367-012-0544-2

[37] C. Dossche, V. Boel, W. De Corte y N. De Belie, “Green concrete: optimization of highstrength concrete based on LCA» Durability and Sustainability of Concrete Structures, Workshop Proceedings, Michigan, American Concrete Institute, 2015, pp. 357-366.

[38] Instituto de Ciencias Medioambientales, “CML,” Universidad de Leiden en los Países Bajos, Holanda, 2001.

[39] Open LCA, “Open LCA 1.6.3,” 2017. http:// www.openlca.org/

[40] N. Lee, S. Tae, Y. Gong y S. Roh, “Integrated building life-cycle assessment model to support South Korea’s green building certification system (G-SEED),” Renewable and Sustainable Energy Reviews, vol. 76, pp. 43-50, 2017. DOI: https://doi.org/10.1016/j.rser.2017.03.038.

[41] Dirección de Gestión Ambiental y Ecosistemas, 2010.Guía para el manejo ambiental de obras.

[42] Secretaría del Medio Ambiente de Medellín, Empresas Públicas de Medellín, Manual de Gestión Socio-Ambiental para Obras de Construcción, 2009.

[43] A. Hess, “Impacto Ambiental de Componentes y Materiales de Edificios,” 2005. [En línea]. Disponibleen:https://studylib.es/doc/5107761/impacto-ambiental-de-compo nentes- y-materiales-de-edificios.

[44] J. Muro y J. Fernandez, “Análisis de ciclo de vida de 1kWh generado por un parque eólico” Gamesa Corporación Tecnológica, España, 2013.

[45] A. Latorre, “La industria del cemento en Colombia. Determinantes y comportamiento de la demanda,”, trabajo de grado pregrado, Facultad de Ciencias Económicas y Administrativas, Pontificia Universidad Javeriana, Bogotá, 2008.

[46] B. Estanqueiro, J. Silvestre, Brito, Jorge y M. Duarte, “Environmental life cycle assess- ment of coarse natural and recycled aggregates for concrete,” European Journal of En- vironmental and Civil Engineering, vol. 22, n.°4, pp. 1-21, 2016. DOI: https://doi.org/1 0.1080/19648189.2016.1197161.

[47] C. Bories, E. Vedrenne, A. P. Massol, G. Vilarem y C. Sablayrolles, “Development of porous fired clay bricks with bio-based additives: Study of the environmental impacts by Life Cycle Assessment (LCA),” Construction and Building Materials, vol. 125, pp. 1142- 1151, 2016. DOI: https://doi.org/10.1016/j. conbuildmat.2016.08.042.

[48] M. Valverde Vera, E. Bances Zapata, A. Rojas y B. Rodriguez, “Impactos ambiental producido por la fabricación de ladrillos en el valle de alto mayo - San Martín,” tesis, Programa Ingeniería Ambiental, Universidad Nacional de San Martín, Perú, 2004.

[49] M. Gousi, C. Andriopoulou, K. Bourikas, S. Ladas, M. Sotiriou, C. Kordulis y A. Lycourghiotis, “Green diesel production over nickel-alumina co-precipitated catalysts,” Applied Catalysis A: General, vol. 536, pp. 45-56, 2017. DOI: https://doi.org/10.1016/j. apcta.2017.02.010.

[50] B. Boonrod, C. Prapainainar, P. Narataruksa, A. Kantama, W. Saibautrong, K. Sudsakorn, T. Mungcharoen y P. Prapainainar, “Evaluating the
environmental impacts of biohydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment,” Journal of Cleaner Production, vol. 142, parte 3, pp. 1210-1221, 2017. DOI: https://doi.or- g/10.1016/j.jclepro.2016.07.128.

[51] M. Kucukvar, M. Ali Haider y N. CihatOnat, “Exploring the material footprints of national electricity production scenarios until 2050: The case for Turkey and UK,” Resources, Conservation and Recycling, vol. 125, pp. 251- 263, 2017. DOI: https://doi.org/10.1016/j. resconrec.2017.06.024.

[52] M. A. Shaikha, M. Kucukvara, N. CihatOnata y G. Kirkil, “A framework for water and carbon footprint analysis of national electricity production scenarios,” Energy, vol. 139, pp. 406-421, 2017. DOI: https://doi. org/10.1016/j.energy.2017.07.124.

[53] Electrificadora del Caribe S.A, “Generación, distribución y medición,” [En línea]. Disponible en http://www.electricaribe.com/co/grandes+clientes/distribucion+de+electricidad/1297110325183/generacion+distribu cion+y+medicion.html. [Último acceso: 1 Septiembre 2017].

[54] Directiva 2008/98/CE, “Sobre residuos y por la que se derogan determinadas Directivas,” Parlamento Europeo y del Consejo, 2008.

[55] T. Ramesh, R. Prakash y K. Shukla, “Life cycle energy analysis of buildings: An over- view,”
Energy and Buildings, vol. 42, n.° 10, pp. 1592-1600, 2010. DOI: https://doi.
org/10.1016/j.enbuild.2010.05.007.

Detalles de artículos

Cómo citar
González Velandia, K., Pérez, L., & Galeano, E. (2020). Análisis del ciclo de vida de un edificio residencial en Colombia. INVENTUM, 14(27), 3-14. https://doi.org/10.26620/uniminuto.inventum.14.27.2019.3-14
Sección
Artículos de Investigación Científica y Tecnológica