Estado del Arte del Potencial de las Espumas de Concreto como Aislantes Acústicos

Contenido principal del artículo

Óscar Arturo Duque
Leidy Lorena García
Nathalya Bolívar
Soed Alejandra Rodríguez
Ángela García
Mónica Amado

Resumen

Esta revisión teórica pretende ser un punto de partida para futuros estudios de espumas de hormigón carbonatado. El documento recoge las propiedades de las espumas de hormigón relacionadas con el aislamien-to acústico, y los tipos ambientales y las implicaciones de dos agentes espumantes (ácido cítrico y bicarbonato de sodio). Finalmente, existe una mayor eficacia del aislamiento acústico cuando la densidad está en un rango más bajo debido a la conexión entre densidad y porosidad, por otro lado, el ácido cítrico tiene vías sostenibles de producción y emisión, a diferencia del proceso de bicarbonato de sodio.

Citas

[1] H. Zhu, Z. Zhao, y C. Hu, “Thermal and Acoustic Insulation Performance Studies of Foamed concrete”, presentado en Materials Science and Technology in Engineering Conference Frontiers of Sustainable Materials, 24-jun-2015.

[2] J. Banhart y J. Baumeister, Production Methods for Metallic Foams, vol. 521. 1998.

[3] M. F Ashby, A. Evans, N. Fleck, L. J Gibson, J. W Hutchinson, y H. N.G Wadley, “Metal Foams: a Design Guide”, Mater. Des., vol. 23, p. 119, feb. 2002.

[4] A. H. Landrock, Handbook of Plastic Foams: Types, Properties, Manufacture and Applications. Elsevier, 1995.

[5] K. Sivertsen, “Polymer foams”. 2007.

[6] K. C. Brady, G. R. A. Watts, y I. R. Jones, Specification for Foamed Concrete. London, United Kingdom: TRL Limited, 2001.

[7] V. C. Fernández-Vítora, Guía metodológica para la evaluación del impacto ambiental. Ediciones Mundi-Prensa, 2010.

[8] M. Geissdoerfer, P. Savaget, N. M. P. Bocken, y E. J. Hultink, “The Circular Economy – A new sustainability paradigm?”, feb. 2017.

[9] Z. Zhang, J. L. Provis, A. Reid, y H. Wang, “Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete”, Cem. Concr. Compos., vol. 62, pp. 97–105, sep. 2015.

[10] N. Farzadnia y M. Amran, “Properties and applications of foamed concrete; a review”, Constr. Build. Mater., vol. 101, pp. 990–1005, dic. 2015.

[11] J. Mohammed y A. J. Hamad, “Materials, properties and application review of lightweight concrete”, Tech. Rev. Fac. Eng. Univ. Zulia, vol. 37, pp. 10–15, ago. 2014.

[12] S. Bombatkar, V. Bajad, V. Murkut, D. Khedekar, y S. Jadhao, “Review of Foamed Concrete”, Int. J. Res. Advent Technol., vol. Special Issue National Conference “CONVERGENCE 2017”, pp. 275–278, abr. 2017.

[13] T. Harrison, “4 - Concrete properties: setting and hardening”, en Advanced Concrete Technology, J. Newman y B. S. Choo, Eds. Oxford: Butterworth-Heinemann, 2003, pp. 1–33.

[14] Litebuilt, Handbook: Aerated concrete products, 1a ed. Melbourne, Australia: Litebuilt SA, 2010.

[15] ASTM International, ASTM C1040 / C1040M-16a; Standard Test Methods for In-Place Density of Unhardened and Hardened Concrete, Including Roller Compacted Concrete, By Nuclear Methods,. 2016.

[16] British Standards Institution, “BS EN 12350-6:2009 - Testing fresh concrete. Density”, may-2009. [En línea]. Disponible en: https://shop.bsigroup.com/ProductDetail/?pid=000000000030164894. [Consultado: 19-feb-2018].

[17] ASTM International, ASTM C495 / C495M-12, Standard Test Method for Compressive Strength of Lightweight Insulating Concrete. 2012.

[18] British Standards Institution, BS EN 12390-3:2002; Testing hardened concrete. Compressive strength of test specimens. 2002, p. 8.

[19] ICONTEC, NTC 550 Concretos. Elaboración y curado de especímenes de concreto en obra. Icontec, 2000.

[20] A. Hajimohammadi, T. Ngo, y P. Mendis, “Enhancing the strength of pre-made foams for foam concrete applications”, Cem. Concr. Compos., vol. 87, pp. 164–171, mar. 2018.

[21] Z. Zhang y H. Wang, “The Pore Characteristics of Geopolymer Foam Concrete and Their Impact on the Compressive Strength and Modulus”, Front. Mater., vol. 3, ago. 2016.

[22] S. Barbudo, M. Ángel, y S. Chinchón Yepes, Introducción a la fabricación y normalización del cemento portland. Universidad de Alicante, 2014.

[23] R.- ASALE, “acústico, ca”, Diccionario de la lengua española. [En línea]. Disponible en: http://dle.rae.es/?id=0gTxC5k. [Consultado: 02-mar-2018].

[24] Soundown, “Handbook of Noise Control Materials”. 2013.

[25] P. F. Pereita, Manual de acústica, ruido y vibraciones: fundamentos básicos y sistemas de control. Gyc, 1989.

[26] F. A. Everest y K. Pohlmann, Master Handbook of Acoustics, 5 edition. New York: McGraw-Hill/TAB Electronics, 2009.

[27] J. M. Tobío, “Aislamiento acústico”, Inf. Constr., vol. 23, núm. 222, pp. 55–85, jul. 1970.

[28] M. D. Flores et al., “Base de Datos de Coeficientes de Absorción Sonora de Diferentes Materiales”, Mecánica Comput., vol. 32, núm. 34, pp. 2901–2908, 2013.

[29] G. Wypych, Handbook of Foaming and Blowing Agents. Elsevier, 2017.

[30] A. Nájera Ayala, M. Arellano, y H. Manuel, “Evaluación de azodicarbonamida y bicarbonato de sodio como agentes aspumantes en resinas de polietileno (PE) y etileno vinil acetato (EVA)”, mar. 2014.

[31] J. P. Sanders y P. K. Gallagher, “Kinetic analysis of complex decomposition reactions using evolved gas analysis”, J. Therm. Anal. Calorim., vol. 96, núm. 3, pp. 805–811, jun. 2009.

[32] S. Yamada y N. Koga, “Kinetics of the thermal decomposition of sodium hydrogencarbonate evaluated by controlled rate evolved gas analysis coupled with thermogravimetry”, Thermochim. Acta - THERMOCHIM ACTA, vol. 431, pp. 38–43, jun. 2005.

[33] P. K. Heda, D. Dollimore, K. S. Alexander, D. Chen, E. Law, y P. Bicknell, “A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate”, Thermochim. Acta, vol. 255, pp. 255–272, may 1995.

[34] B. Janković y B. Adnađević, “The use of the IKP method for evaluating the kinetic parameters and the conversion function of the thermal decomposition of NaHCO3 from nonisothermal thermogravimetric data”, Int. J. Chem. Kinet., vol. 39, núm. 8, pp. 462–471, ago. 2007.

[35] S. D. Barton y W. D. Ollis, Comprehensive Organic Chemistry: The Synthesis and Reactions of Organic Compounds. Pergamon Press, 1979.

[36] J. Stehr, “Chemical blowing agents in the rubber industry. Past - present - and future?”, vol. 43, pp. 812–819, ene. 2016.

[37] T. Sadik, C. Pillon, C. Carrot, y J. A. R. Ruiz, “Dsc studies on the decomposition of chemical blowing agents based on citric acid and sodium bicarbonate”, Thermochim. Acta, vol. 659, pp. 74–81, ene. 2018.

[38] D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski, y L. Chmurzyński, “Thermal behaviour of citric acid and isomeric aconitic acids”, J. Therm. Anal. Calorim., vol. 104, núm. 2, pp. 731–735, may 2011.

[39] M. M. Barbooti y D. A. Al-Sammerrai, “Thermal decomposition of citric acid”, Thermochim. Acta, vol. 98, pp. 119–126, feb. 1986.

[40] J. A. Frankel, “Global Environmental Policy and Global Trade Policy”, SSRN Electron. J., 2008.

[41] A. Gutiérrez y F. Pérez, “Análisis del ciclo de vida comparativo de una mermelada de naranja ecológica y no ecológica”, 2013.

[42] M. C. Ball, C. M. Snelling, A. N. Strachan, y R. M. Strachan, “Thermal decomposition of solid sodium bicarbonate”, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases, vol. 82, núm. 12, pp. 3709–3715, ene. 1986.

[43] R. M. O. Fernández y R. C. Bojollo, “Influencia de la climatología y el manejo del suelo en las emisiones de CO2 en un suelo arcilloso de la Vega de Carmona”, Carel Carmona Rev. Estud. Locales, núm. 6, pp. 2339–2354, 2008.

[44] R. D. P. C. Mendoza, A. J. G. Hinestroza, y E. C. Quispe, “MEJORAMIENTO DE LA EFICIENCIA ENERGÉTICA EN LA INDUSTRIA DEL CEMENTO POR PROCESO HÚMEDO A TRAVÉS DE LA IMPLEMENTACIÓN DEL SISTEMA DE GESTIÓN INTEGRAL DE LA ENERGÍA”, DYNA, vol. 80, núm. 177, pp. 115–123, ene. 2013.

[45] D. Dollimore y C. O’Connell, “A comparison of the thermal decomposition of preservatives, using thermogravimetry and rising temperature kinetics”, Thermochim. Acta - THERMOCHIM ACTA, vol. 324, pp. 33–48, dic. 1998.

[46] Y.-L. Wu y S.-M. Shih, “Intrinsic kinetics of the thermal decomposition of sodium bicarbonate”, presentado en THERMOCHIMICA ACTA, 1993, p. 177.

[47] W. D. Seider, J. D. Seader, D. R. Lewin, y S. Widagdo, Product and Process Design Principles: Synthesis, Analysis and Design, 3 edition. Hoboken, NJ: John Wiley & Sons, 2008.

[48] LABCHEM, “MSDS CITRIC ACID”. [En línea]. Disponible en: http://www.labchem.com/tools/msds/msds/LC13140.pdf. [Consultado: 24-ene-2019].

[49] LABCHEM, “MSDS SODIUM BICARBONATE”. [En línea]. Disponible en: http://www.labchem.com/tools/msds/msds/LC22943.pdf. [Consultado: 24-ene-2019].

[50] LABCHEM, “MSDS SODIUM CARBONATE”. [En línea]. Disponible en: http://www.labchem.com/tools/msds/msds/LC22965.pdf. [Consultado: 24-ene-2019].

[51] SPECTRUM, “MSDS C5H4O3”. [En línea]. Disponible en: https://www.spectrumchemical.com/MSDS/F3480.PDF. [Consultado: 24-ene-2019].

[52] LABCHEM, “MSDS WATER”. [En línea]. Disponible en: http://www.labchem.com/tools/msds/msds/LC26750.pdf. [Consultado: 24-ene-2019].

[53] AFROX, “MSDS CARBON DIOXIDE”. [En línea]. Disponible en: http://www.afrox.co.za/en/images/Carbon_Dioxide266_167209_tcm266-167209.pdf. [Consultado: 24-ene-2019].

[54] European Soda Ash Producers Association (ESAPA), “PROCESS BREF FOR SODA ASH”. CEFIC, mar-2004.

[55] LABCHEM, “MSDS HCL”. [En línea]. Disponible en: http://www.labchem.com/tools/msds/msds/LC15300.pdf. [Consultado: 24-ene-2019].

[56] UNAM, “MSDS NH3”. [En línea]. Disponible en: https://quimica.unam.mx/wp-content/uploads/2016/12/18amoniaco.pdf. [Consultado: 24-ene-2019].

[57] C. for F. S. and A. Nutrition, “Microorganisms & Microbial-Derived Ingredients Used in Food (Partial List)”. [En línea]. Disponible en: https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/MicroorganismsMicrobialDerivedIngredients/default.htm. [Consultado: 24-ene-2019].

[58] J. A. Velásquez, F. D. Beltrán, L. Padilla, y G. Giraldo, “Obtención de ácido cítrico por fermentación con aspergillus níger utilizando sustrato de plátano dominico hartón (musa aab simmonds) maduro”, Tumbaga, vol. 1, núm. 5, pp. 135–147, 2010.

[59] C. Chen, G. Habert, Y. Bouzidi, y A. Jullien, “Environmental impact of cement production: detail of the different processes and cement plant variability evaluation”, J. Clean. Prod., vol. 18, núm. 5, pp. 478–485, mar. 2010.

[60] M. Schneider, M. Romer, M. Tschudin, y H. Bolio, “Sustainable cement production—present and future”, Cem. Concr. Res., vol. 41, núm. 7, pp. 642–650, jul. 2011.