Nanocompuestos de cannabis de liberación controlada: una opción terapéutica y transicional
Contenido principal del artículo
Resumen
Esta propuesta tiene por objeto el desarrollo de compositos a partir de cannabinoides (CBD) inmovilizados sobre carbones, como instrumento futuro para la sustitución de cultivos ilícitos y/o la apertura de nuevas líneas económicas en Colombia contribuyendo a modelos de paz. Para esto, se obtuvo carbón activo a partir de la pirolisis de semillas y se funcionalizó con grupos amina (CAN). Los materiales obtenidos se caracterizaron fisicoquímicamente. La carga de CBD se realizó sobre los carbones y se evaluó la liberación a condiciones fisiológicas simuladas, a pH 2.1 (gástrico) y pH 7.4 (intestinal). Los materiales desorbidos se pusieron en contacto con aflatoxinas durante 15 minutos a 37°C en medio intestinal para evaluar el efecto dual de los carbones. La molécula de CBD tuvo una mayor afinidad por los materiales CAN, lo cual se atribuye a interacciones π deslocalizados-catión. Las liberaciones de CBD fueron cercanas al 90% en el medio gástrico, y alcanzaron el 100% en intestino. La remoción de aflatoxinas (AFLAB1) con CAN fue del 100% a partir de concentraciones de 426 μg/L. Los carbones permitieron la liberación controlada de CBD y la remoción subsecuente de aflatoxinas convirtiéndose en alternativas de valor terapéutico, mientras contribuye a la sustitución de cultivos ilícitos.
Citas
Alkorta, Ibon, José Elguero, and Antonio Frontera. 2020. “Not Only Hydrogen Bonds: Other Noncovalent Interactions.” Crystals 10(3): 180.
Awuchi, Chinaza Godswill et al. 2020. “Aflatoxins in Foods and Feeds: A Review on Health Implications, Detection, and Control.” Bull. Environ. Pharmacol. Life Sci 9: 149–55.
Begines, Belén et al. 2020. “Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects.” Nanomaterials 10(7): 1403.
Bursten, Brown Lemay. 2004. Brown LeMay Bursten ®.
Chandra, Prem. 2021. “Aflatoxins: Food Safety, Human Health Hazards and Their Prevention.” In AflatoxinsOccurrence, Detoxification, Determination and Health Risks, IntechOpen.
Chandrakala, V, Valmiki Aruna, and Gangadhara Angajala. 2022. “Review on Metal Nanoparticles as Nanocarriers: Current Challenges and Perspectives in Drug Delivery Systems.” Emergent Materials 5(6): 1593–1615.
Elmouwahidi, Abdelhakim, Zulamita Zapata-Benabithe, Francisco Carrasco-Marín, and Carlos MorenoCastilla. 2012. “Activated Carbons from KOH-Activation of Argan (Argania Spinosa) Seed Shells as Supercapacitor Electrodes.” Bioresource Technology 111(June 2017): 185–90. http://dx.doi.org/10.1016/j.biortech.2012.02.010.
Fritz, P A et al. 2021. “Electrode Surface Potential-Driven Protein Adsorption and Desorption through Modulation of Electrostatic, van Der Waals, and Hydration Interactions.” Langmuir 37(21): 6549–55.
Fu, Jingxin et al. 2022. “Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20 (S)-Protopanaxadiol (PPD).” Pharmaceutics 14(8): 1533.
Giraldo, Lady J. et al. 2017. “The Effects of SiO2 Nanoparticles on the Thermal Stability and Rheological Behavior of Hydrolyzed Polyacrylamide Based Polymeric Solutions.” Journal of Petroleum Science and Engineering 159.
JIFE. 2019. Informe de La Junta Internacional de Fiscalización de Estupefacentes. Viena.
Keskin, Eda, and Ozan Emre Eyupoglu. 2023. “Determination of Mycotoxins by HPLC, LC-MS/MS and Health Risk Assessment of the Mycotoxins in Bee Products of Turkey.” Food Chemistry 400: 134086.
Kumar, Abhishek, Hardik Pathak, Seema Bhadauria, and Jebi Sudan. 2021. “Aflatoxin Contamination in Food Crops: Causes, Detection, and Management: A Review.” Food Production, Processing and Nutrition 3: 1–9.
Ma, Fei et al. 2021. “Adsorptive Removal of Aflatoxin B1 from Vegetable Oils via Novel Adsorbents Derived from a Metal-Organic Framework.” Journal of Hazardous Materials 412: 125170.
Maldonado, Diana. 2023. “FSA Emite Nueva Recomendación Para Dosis de CBD En Alimentos.” : 1.
https:// www.revistaialimentos.com/es/noticias/fsa-emite-nueva-recomendacion-para-dosis-de-cbd-en-alimentos.
Montoya, Tatiana et al. 2014. “A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the ‘Chemical Theory.’” Energy & Fuels 28(8):4963–75. https://doi.org/10.1021/ef501020d.
Nakano, Yukako et al. 2019. “Development of a Novel Nanoemulsion Formulation to Improve Intestinal Absorption of Cannabidiol.” Medical Cannabis and Cannabinoids 2(1): 35–42.
Nelson, Kathryn M et al. 2020. “The Essential Medicinal Chemistry of Cannabidiol (CBD).” Journal of medicinal chemistry 63(21): 12137–55.
Pérez-Cadenas, Agustín F., Francisco J. Maldonado-Hódar, and Carlos Moreno-Castilla. 2003. “On the Nature of Surface Acid Sites of Chlorinated Activated Carbons.” Carbon 41(3): 473–78.
Perucca, Emilio, and Meir Bialer. 2020. “Critical Aspects Affecting Cannabidiol Oral Bioavailability and Metabolic Elimination, and Related Clinical Implications.” CNS drugs 34: 795–800.
PwC. 2000. Colombia Productiva - Planes de Negocio. www.pwc.com.
Ramírez, Juan Mauricio. 2019. LA INDUSTRIA DEL CANNABIS MEDICINAL EN COLOMBIA. Bogota.
Salazar Londoño, Daniela. 2021. “Efectos Del Cannabidiol (CBD) En El Dolor e Inflamación Crónica.”
Saleh, Tawfik A, Azeem Rana, Mohammed K Arfaj, and Mukaila A Ibrahim. 2022. “Hydrophobic Polymer-Modified Nanosilica as Effective Shale Inhibitor for Water-Based Drilling Mud.” Journal of Petroleum Science and Engineering 209: 109868. https://www.sciencedirect.com/science/article/pii/S0920410521014868.
Wang, Shao-Min, Mohana Shivanna, and Qing-Yuan Yang. 2022. “Nickel-based Metal—Organic Frameworks for Coal-bed Methane Purification with Record CH4/N2 Selectivity.” Angewandte Chemie International Edition 61(15): e202201017.
Wang, Su-Yan et al. 2023. “Occurrence of Aflatoxins in Water and Decontamination Strategies: A Review.” Water Research 232: 119703.
Yilmaz, Bengi, Ahmet Engin Pazarceviren, Aysen Tezcaner, and Zafer Evis. 2020. “Historical Development of Simulated Body Fluids Used in Biomedical Applications: A Review.” Microchemical Journal 155: 104713.
Zhao, Guoke, and Hongwei Zhu. 2020. “Cation–π Interactions in Graphene-containing Systems for Water Treatment and Beyond.” Advanced materials 32(22): 1905756.