Desarrollo del vehículo eléctrico tipo transportador personal

Contenido principal del artículo

Víctor Velasco-Ulco
https://orcid.org/0000-0001-5094-6775
Alexandra Chuquitarco-Aguayo
https://orcid.org/0000-0002-2279-509X
Edilberto Antonio Llanes-Cedeño
https://orcid.org/0000-0002-6700-5231
Juan Carlos Rocha-Hoyos
https://orcid.org/0000-0002-6700-5231

Resumen

El artículo presenta la construcción de un vehículo eléctrico tipo Segway de dos ruedas, a partir del diseño de cada una de sus partes y la aplicación de la ingeniería inversa, para su desarrollo en Ecuador. La selección de sensores, controladores y actuadores se realiza a partir de referencias utilizadas en otras investigaciones. La formulación de Lagrange-Euler se usa para el modelo dinámico del sistema; en la selección y dimensionamiento de los motores se tienen en cuenta las relaciones de potencia y torque-velocidad para superar la resistencia en un plano inclinado. Para la evaluación del prototipo se realizaron pruebas en situaciones de pendiente, actuando de manera estable con velocidades superior a 4 km/h e inferior a 20 km/h. La autonomía del vehículo es de aproximadamente de 4 horas para un recorrido de 40 kilómetros y la descarga de las baterías entre 25.2 y 20 voltios. El diseño del vehículo cumple con los requerimientos exigidos para este tipo de transporte personal.


  

Citas

Kim, S., & Kwon, S. (2015). Dynamic modeling of a two-wheeled inverted pendulum balancing mobile robot. International Journal of Control, Automation and Systems, 13(4), 926-933.
Castro, A., Adams, C., & Singhose, W. (2013, December). Dynamic response characteristics of a two-wheeled inverted-pendulum transporter. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on (pp. 1532-1537). IEEE.
Stilman, M., Olson, J., & Gloss, W. (2010, May). Golem krang: Dynamically stable humanoid robot for mobile manipulation. In Robotics and Automation (ICRA), 2010 IEEE International Conference on (pp. 3304-3309). IEEE.
Castro, D., & Delgado, J. (2011). Diseño y construcción de un prototipo experimental de un vehículo eléctrico autobalanceado unipersonal VEAU. Universidad Industrial de Santander UIS.[Links].
Ba, P. D., Lee, S. G., Back, S., Kim, J., & Lee, M. K. (2016, October). Balancing and translation control of a ball segway that a human can ride. In Control, Automation and Systems (ICCAS), 2016 16th International Conference on (pp. 477-480). IEEE.
Babazadeh, R., Khiabani, A. G., & Azmi, H. (2016, January). Optimal control of Segway personal transporter. In Control, Instrumentation, and Automation (ICCIA), 2016 4th International Conference on (pp. 18-22). IEEE.
Rocha-Hoyos, J., Tipanluisa, L. E., Reina, S. W., & Ayabaca, C. R. (2017). Evaluación del Sistema de Tracción en un Vehículo Eléctrico Biplaza de Estructura Tubular. Información tecnológica, 28(2), 29-36.
Siregar, H. P., & Martynenko, Y. G. (2012). Stabilization of Motion of the Segway. Journal of Emerging Trends in Computing and Information Sciences, 3(8), 1219-1225.
Jamin, N. F., & Ghani, N. A. (2016, October). Two-wheeled wheelchair stabilization control using fuzzy logic controller based particle swarm optimization. In Automatic Control and Intelligent Systems (I2CACIS), IEEE International Conference on (pp. 78-83). IEEE.
Quaglia, G., Franco, W., & Nisi, M. (2017). Kinematic Analysis of an Electric StairClimbing Wheelchair. Ingeniería y Universidad, 21(1), 27-48.
Moreno, L., & DUARTE, M. (2009). Diseño e Implementación de Vehículo Autobalanceado sobre Dos Ruedas. Disponible desde Internet en http://www. cec. uchile. cl/~ lemoreno/dat/paper_memoria_BORRADOR. pdf [con acceso el 01/06/2014][Links].
Prakash, K., & Thomas, K. (2016, September). Study of controllers for a two wheeled self-balancing robot. In Next Generation Intelligent Systems (ICNGIS), International Conference on (pp. 1-7). IEEE.
Madero, V. (2009). Análisis y Control de Un Vehículo Basado en Péndulo Invertido. Sevilla, Universidad De Sevilla.
Dini, N., & Majd, V. J. (2015, October). Model predictive control of a wheeled inverted pendulum robot. In Robotics and Mechatronics (ICROM), 2015 3rd RSI International Conference on (pp. 152-157). IEEE.
Hata, H., & Takimoto, T. (2014, October). Development of the portable two-wheeled inverted pendulum type personal vehicle. In Control, Automation and Systems (ICCAS), 2014 14th International Conference on (pp. 1610-1613). IEEE.
Alqudah, M., Abdelfattah, M., Boiko, I., & Alhammadi, K. (2016, December). Dynamic modeling and control design for a self-balancing two-wheel chair. In Electronic Devices, Systems and Applications (ICEDSA), 2016 5th International Conference on (pp. 1-4). IEEE.
Ren, T. J. (2004). Modeling and motion control of the mobile vehicle with an inverted pendulum. In Proc. Int. Conf. on Intelligent Manipulation and Grasping, Genoa, 2004.
Camacho Quintero, O. E. (2016). Controllers Comparison to stabilize a Two-wheeled Inverted Pendulum: PID, LQR and Sliding Mode Control.
Li, J., Gao, X., Huang, Q., Du, Q., & Duan, X. (2007, August). Mechanical design and dynamic modeling of a two-wheeled inverted pendulum mobile robot. In Automation and Logistics, 2007 IEEE International Conference on (pp. 1614-1619). IEEE.
Hu, J. S., & Tsai, M. C. (2008). Design of robust stabilization and fault diagnosis for an auto-balancing two-wheeled cart. Advanced Robotics, 22(2-3), 319-338.
Sugano, T., Yokoyama, K., Suzuki, T., & Takahashi, M. (2013). Modeling and motion analysis of a mobile inverted pendulum considering a change of slope angle. Nihon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 79(801), 1441-1452.
van Rensburg, R., Steyn, N., Trénoras, L., Hamam, Y., & Monacelli, E. (2017). Stability and enhancement analysis of a modelled self-balancing verticalized mobility aid using optimal control techniques. African Journal of Science, Technology, Innovation and Development, 9(1), 93-109.