Optimizing programming language learning: A data analytics-based approach for Systems Engineering students at Los Libertadores University Foundation
Main Article Content
Abstract
The research proposes a solid methodology for constructing predictive models of academic performance in Systems Engineering students, based on detailed analysis of academic data, especially in programming and intermediate programming. By utilizing various metrics, it seeks to enhance educational analytics and the prediction of performance in specialized areas. Students from the first and second semesters of the last five years will be analyzed, meticulously collecting data and employing three machine learning techniques to construct predictive models with an accuracy close to 65 %.
Thus, the Naïve Bayes-based model stands out for identifying students prone to repeating and dropping out, examining the most relevant characteristics for predicting academic performance. This approach aims not only to improve predictive capacity in Systems Engineering but also to be replicable in other courses and programs.
Consequently, the methodology will contribute to improving learning processes and generating intervention strategies for students at risk of repetition and dropout, aligning with the research mission of catalyzing a positive impact on educational quality and student well-being, acting as an agent of interdisciplinary transformation.
References
Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through college. U.S. Department of Education.
Anderson, T., & Dron, J. (2011). Three generations of distance education pedagogy. The International Review of Research in Open and Distributed Learning, 12(3), 80-97. https://doi.org/10.19173/irrodl.v12i3.890
Baker, R. S. J. d., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. Journal of Educational Data Mining, 1(1), 3-17. https://doi.org/10.5281/zenodo.3554657
Castrillón, O. D., Sarache, W. y Ruiz-Herrera, S. (2020). Prediction of academic performance using artificial intelligence techniques. Formación Universitaria, 13(1), 93-102 (2020) http://dx.doi.org/10.4067/S0718-50062020000100093
Clow, D. (2013). An overview of learning analytics. Journal of Learning Analytics, 1(1), 4-19. https://doi.org/10.18608/jla.2014.11.3
Díaz, B., Meleán, R. y Marín, W. (2021). Rendimiento académico de estudiantes en educación superior: predicciones de factores influyentes a partir de árboles de decisión. Telos: Revista de Estudios Interdisciplinarios en Ciencias Sociales, 23(3), 616-639. https://doi.org/10.36390/telos233.08
Durairaj, M. y Vijitha, C. (2014). Educational data mining for prediction of student performance using clustering algorithms. International Journal of Computer Science and Information Technologies, 5(4), 5987-5991. https://www.semanticscholar.org/paper/Educational-Data-mining-for-Prediction-of-Student-Durairaj-Vijitha/892b0182c44c34a2ae68daec819eaec301c3bd9c
Gutiérrez, J. A., Garzón, J. y Segura, A. M. (2021). Factores asociados al rendimiento académico en estudiantes universitarios. Formación Universitaria, 14(1), 13-24. http://dx.doi.org/10.4067/S0718-50062021000100013
Han, J. (2012). Data mining: Concepts and techniques. Morgan Kaufmann Publishers.
Juárez, P., Morales, M., Sánchez, J., & López, D. (2014). Innovative approaches to software development: Challenges and practices. Springer.
Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., ... & Thomas, L. (2004). A multi-national study of reading and tracing skills in novice programmers. ACM SIGCSE Bulletin, 36(4), 119-150. https://doi.org/10.1145/1041624.1041673
Mueen, A., Zafar, B., y Manzoor, U. (2016). Modeling and predicting students’ academic performance using data mining techniques. International Journal of Modern Education and Computer Science (IJMECS), 8(11), 36-42. https://doi.org/10.5815/ijmecs.2016.11.05
Peña, A. (2014). Métodos y técnicas de análisis de datos en la investigación científica. Síntesis.
Romero, C. y Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601-618. https://doi.org/10.1109/TSMCC.2010.2053532
Salal, Y., Ullah, S., Khan, M. A., & Shah, M. A. (2019). Analyzing the impact of feature selection on classification techniques: A case study of email spam filtering. Journal of King Saud University - Computer and Information Sciences, 31(4), 412-423. https://doi.org/10.1016/j.jksuci.2018.03.011
Sebesta, R. W. (2015). Concepts of Programming Languages (11th ed.). Pearson.
Siemens, G., & Long, P. (2011). Penetrating the fog: Analytics in learning and education. EDUCAUSE Review, 46(5), 30-32.
Sommerville, I. (2011). Software engineering (9th ed.). Addison-Wesley.
Torres, P. C. y Cobo, J. K. (2017). Tecnología educativa y su papel en el logro de los fines de la educación. Educere, 21(68), 31-40.
Wang, Q., & Woo, H. L. (2007). Systematic planning for ICT integration in topic learning. Educational Technology & Society, 10(1), 148-156.
Witten, I. H. Frank, E. y Hall, M. A. (2005). Data mining: Practical machine learning tools and techniques. Morgan Kaufmann.