Analysis of the variables that affect the operation of the solar catamaran in the Galapagos Islands
Main Article Content
Abstract
The Galapagos Islands ecosystem has a great biodiversity and endemism, which is greatly affected by different human activities present in the islands. Maritime passenger transport on the Itabaca Canal is based on vessels with combustion engines, consuming an annual average of 4200 gallons of fuel that produce about 38 tons of CO2 per year. In this sense, the operation of the INER 1 solar-powered electric catamaran is a sustainable and renewable model for maritime passenger transport within the Galapagos Islands. This transport system is influenced by different variables of the social, environmental - seasonal and energy type that need to be evaluated to analyze which of them is the one that most influences its operation and why its importance. To this end, it has been proposed to use the attribute selection method to handle the data in an adequate manner and to predict efficiently the effects of each of them on the vessel. Based on the aforementioned it is proposed to carry out a bibliographic review on the variables that most influence or in the operation of the solar catamaran “INER 1” in the Galapagos Islands.
References
Bleicher, A. (2013). Solar sailor [Dream Jobs 2013 - Renewables]. IEEE Spectrum, 50(2), 45-46. doi:10.1109/MSPEC.2013.6420144
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
Cuvi, N., & Guijarro, D. (2016). ¿ Una trayectoria hacia la insustentabilidad? La movilidad terrestre en la isla Santa Cruz, Galápagos. Revista Transporte y Territorio(15), 216-240.
Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent data analysis, 1(3), 131-156.
Galápagos., P. N. (2017). Informe anual 2017 visitantes a las áreas protegidas de Galápagos. Retrieved from http://www.galapagos.gob.ec/
García, J., Rangel, E., & Farías, M. (2013). Informe Galápagos 2011-2012. DPNG, GCREG, FCD y GC. . In. Puerto Ayora.
GÜRSU, H. (2016). Solar And Wind Powered Concept Boats: The Example Of Volitan. METU Journal of the Faculty of Architecture, 31(2).
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.
Hatwaambo, S., Jain, P. C., Perers, B., & Karlsson, B. (2009). Projected beam irradiation at low latitudes using Meteonorm database. Renewable Energy, 34(5), 1394-1398. doi:https://doi.org/10.1016/j.renene.2008.09.011
Helling, R. K. (2017). The Role of LCA in Sustainable Development. In M. A. Abraham (Ed.), Encyclopedia of Sustainable Technologies (pp. 237-242). Oxford: Elsevier.
INOCAR, I. O. d. l. A. (2016). Tabla de Mareas In: INOCAR.
Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small sample performance. IEEE transactions on pattern analysis and machine intelligence, 19(2), 153-158.
Jara-Alvear, J., Pastor, H., Garcia, J., Casafont, M., Araujo, E., & Calderon, E. (2013). Embarcaciones solares, una evolución al transporte marino en las islas Galápagos, Ecuador. Paper presented at the 1st International congress and scientific expo ISEREE.
Jurado, S., Nebot, À., Mugica, F., & Avellana, N. (2015). Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques. Energy, 86, 276-291. doi:https://doi.org/10.1016/j.energy.2015.04.039
Khmaissia, F., Frigui, H., Sunkara, M., Jasinski, J., Garcia, A. M., Pace, T., & Menon, M. (2018). Accelerating band gap prediction for solar materials using feature selection and regression techniques. Computational Materials Science, 147, 304-315. doi:https://doi.org/10.1016/j.commatsci.2018.02.012
Ko, N., & Gantner, J. (2016). Local added value and environmental impacts of ship scrapping in the context of a ship's life cycle. Ocean Engineering, 122, 317-321. doi:https://doi.org/10.1016/j.oceaneng.2016.05.026
Kumar, N. M., Kumar, M. R., Rejoice, P. R., & Mathew, M. (2017). Performance analysis of 100 kWp grid connected Si-poly photovoltaic system using PVsyst simulation tool. Energy Procedia, 117, 180-189. doi:https://doi.org/10.1016/j.egypro.2017.05.121
Leary, D., & Kubby, J. (2017). Feature Selection and ANN Solar Power Prediction. Journal of Renewable Energy, 2017, 7. doi:10.1155/2017/2437387
Ling-Chin, J., & Roskilly, A. P. (2016). A comparative life cycle assessment of marine power systems. Energy Conversion and Management, 127, 477-493. doi:https://doi.org/10.1016/j.enconman.2016.09.012
Lucas, A., Neto, R. C., & Silva, C. A. (2013). Energy supply infrastructure LCA model for electric and hydrogen transportation systems. Energy, 56, 70-80. doi:https://doi.org/10.1016/j.energy.2013.04.056
Maggí, P. D. E., Rodríguez, J. P. C., Litardo, J. E. T., & Caviedes, E. C. E. (2018). ANÁLISIS DEL MERCADO TURÍSTICO DE LAS ISLAS GALÁPAGOS: CASO CRUISING GALÁPAGOS. Observatorio de la Economía Latinoamericana. doi:http://www.eumed.net/2/rev/oel/2018/02/mercado-turistico-galapagos.html
Moya, M., & Arroyo, D. (2015). Análisis de los resultados de la operación del catamarán “Génesis Solar” en el estrecho de Itabaca (Islas Galápagos). Congreso Internacional I+D+I, 2.
Muñoz Barriga, A. (2015). La contradicción del turismo en la conservación y el desarrollo en Galápagos - Ecuador. Estudios y perspectivas en turismo., 24(2), 399-413. doi:http://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-17322015000200012&lng=es&tlng=es.
Okello, D., van Dyk, E. E., & Vorster, F. J. (2015). Analysis of measured and simulated performance data of a 3.2kWp grid-connected PV system in Port Elizabeth, South Africa. Energy Conversion and Management, 100, 10-15. doi:https://doi.org/10.1016/j.enconman.2015.04.064
Salcedo-Sanz, S., & Cornejo-Bueno, L. (2018). Feature selection in machine learning prediction systems for renewable energy applications. Renewable and Sustainable Energy Reviews, 90, 728-741. doi:https://doi.org/10.1016/j.rser.2018.04.008
Schiller, L., Alava, J. J., Grove, J., Reck, G., & Pauly, D. (2015). The demise of Darwin's fishes: evidence of fishing down and illegal shark finning in the Galápagos Islands. Aquatic Conservation: Marine and Freshwater Ecosystems, 25(3), 431-446.
Touati, F., Chowdhury, N. A., Benhmed, K., San Pedro Gonzales, A. J. R., Al-Hitmi, M. A., Benammar, M., . . . Ben-Brahim, L. (2017). Long-term performance analysis and power prediction of PV technology in the State of Qatar. Renewable Energy, 113, 952-965. doi:https://doi.org/10.1016/j.renene.2017.06.078
Zhang, W., Dang, H., & Simoes, R. (2018). A new solar power output prediction based on hybrid forecast engine and decomposition model. ISA Transactions. doi:https://doi.org/10.1016/j.isatra.2018.06.004